Metamath Proof Explorer


Theorem fdifsuppconst

Description: A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024)

Ref Expression
Hypothesis fdifsuppconst.1 A=domFsuppZF
Assertion fdifsuppconst FunFFVZWFA=A×Z

Proof

Step Hyp Ref Expression
1 fdifsuppconst.1 A=domFsuppZF
2 funfn FunFFFndomF
3 2 biimpi FunFFFndomF
4 3 ad2antrr FunFFVZWFFndomF
5 difssd FunFFVZWdomFsuppZFdomF
6 1 5 eqsstrid FunFFVZWAdomF
7 4 6 fnssresd FunFFVZWFAFnA
8 fnconstg ZWA×ZFnA
9 8 adantl FunFFVZWA×ZFnA
10 4 adantr FunFFVZWxAFFndomF
11 dmexg FVdomFV
12 11 ad3antlr FunFFVZWxAdomFV
13 simplr FunFFVZWxAZW
14 1 eleq2i xAxdomFsuppZF
15 14 biimpi xAxdomFsuppZF
16 15 adantl FunFFVZWxAxdomFsuppZF
17 10 12 13 16 fvdifsupp FunFFVZWxAFx=Z
18 simpr FunFFVZWxAxA
19 18 fvresd FunFFVZWxAFAx=Fx
20 fvconst2g ZWxAA×Zx=Z
21 20 adantll FunFFVZWxAA×Zx=Z
22 17 19 21 3eqtr4d FunFFVZWxAFAx=A×Zx
23 7 9 22 eqfnfvd FunFFVZWFA=A×Z
24 23 3impa FunFFVZWFA=A×Z