Step |
Hyp |
Ref |
Expression |
1 |
|
fdifsuppconst.1 |
|- A = ( dom F \ ( F supp Z ) ) |
2 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
3 |
2
|
biimpi |
|- ( Fun F -> F Fn dom F ) |
4 |
3
|
ad2antrr |
|- ( ( ( Fun F /\ F e. V ) /\ Z e. W ) -> F Fn dom F ) |
5 |
|
difssd |
|- ( ( ( Fun F /\ F e. V ) /\ Z e. W ) -> ( dom F \ ( F supp Z ) ) C_ dom F ) |
6 |
1 5
|
eqsstrid |
|- ( ( ( Fun F /\ F e. V ) /\ Z e. W ) -> A C_ dom F ) |
7 |
4 6
|
fnssresd |
|- ( ( ( Fun F /\ F e. V ) /\ Z e. W ) -> ( F |` A ) Fn A ) |
8 |
|
fnconstg |
|- ( Z e. W -> ( A X. { Z } ) Fn A ) |
9 |
8
|
adantl |
|- ( ( ( Fun F /\ F e. V ) /\ Z e. W ) -> ( A X. { Z } ) Fn A ) |
10 |
4
|
adantr |
|- ( ( ( ( Fun F /\ F e. V ) /\ Z e. W ) /\ x e. A ) -> F Fn dom F ) |
11 |
|
dmexg |
|- ( F e. V -> dom F e. _V ) |
12 |
11
|
ad3antlr |
|- ( ( ( ( Fun F /\ F e. V ) /\ Z e. W ) /\ x e. A ) -> dom F e. _V ) |
13 |
|
simplr |
|- ( ( ( ( Fun F /\ F e. V ) /\ Z e. W ) /\ x e. A ) -> Z e. W ) |
14 |
1
|
eleq2i |
|- ( x e. A <-> x e. ( dom F \ ( F supp Z ) ) ) |
15 |
14
|
biimpi |
|- ( x e. A -> x e. ( dom F \ ( F supp Z ) ) ) |
16 |
15
|
adantl |
|- ( ( ( ( Fun F /\ F e. V ) /\ Z e. W ) /\ x e. A ) -> x e. ( dom F \ ( F supp Z ) ) ) |
17 |
10 12 13 16
|
fvdifsupp |
|- ( ( ( ( Fun F /\ F e. V ) /\ Z e. W ) /\ x e. A ) -> ( F ` x ) = Z ) |
18 |
|
simpr |
|- ( ( ( ( Fun F /\ F e. V ) /\ Z e. W ) /\ x e. A ) -> x e. A ) |
19 |
18
|
fvresd |
|- ( ( ( ( Fun F /\ F e. V ) /\ Z e. W ) /\ x e. A ) -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
20 |
|
fvconst2g |
|- ( ( Z e. W /\ x e. A ) -> ( ( A X. { Z } ) ` x ) = Z ) |
21 |
20
|
adantll |
|- ( ( ( ( Fun F /\ F e. V ) /\ Z e. W ) /\ x e. A ) -> ( ( A X. { Z } ) ` x ) = Z ) |
22 |
17 19 21
|
3eqtr4d |
|- ( ( ( ( Fun F /\ F e. V ) /\ Z e. W ) /\ x e. A ) -> ( ( F |` A ) ` x ) = ( ( A X. { Z } ) ` x ) ) |
23 |
7 9 22
|
eqfnfvd |
|- ( ( ( Fun F /\ F e. V ) /\ Z e. W ) -> ( F |` A ) = ( A X. { Z } ) ) |
24 |
23
|
3impa |
|- ( ( Fun F /\ F e. V /\ Z e. W ) -> ( F |` A ) = ( A X. { Z } ) ) |