| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-res |
⊢ ( ◡ 𝑅 ↾ 𝐵 ) = ( ◡ 𝑅 ∩ ( 𝐵 × V ) ) |
| 2 |
1
|
cnveqi |
⊢ ◡ ( ◡ 𝑅 ↾ 𝐵 ) = ◡ ( ◡ 𝑅 ∩ ( 𝐵 × V ) ) |
| 3 |
|
cnvin |
⊢ ◡ ( ◡ 𝑅 ∩ ( 𝐵 × V ) ) = ( ◡ ◡ 𝑅 ∩ ◡ ( 𝐵 × V ) ) |
| 4 |
|
cnvcnv |
⊢ ◡ ◡ 𝑅 = ( 𝑅 ∩ ( V × V ) ) |
| 5 |
|
cnvxp |
⊢ ◡ ( 𝐵 × V ) = ( V × 𝐵 ) |
| 6 |
4 5
|
ineq12i |
⊢ ( ◡ ◡ 𝑅 ∩ ◡ ( 𝐵 × V ) ) = ( ( 𝑅 ∩ ( V × V ) ) ∩ ( V × 𝐵 ) ) |
| 7 |
|
inass |
⊢ ( ( 𝑅 ∩ ( V × V ) ) ∩ ( V × 𝐵 ) ) = ( 𝑅 ∩ ( ( V × V ) ∩ ( V × 𝐵 ) ) ) |
| 8 |
|
inxp |
⊢ ( ( V × V ) ∩ ( V × 𝐵 ) ) = ( ( V ∩ V ) × ( V ∩ 𝐵 ) ) |
| 9 |
|
inv1 |
⊢ ( V ∩ V ) = V |
| 10 |
9
|
eqcomi |
⊢ V = ( V ∩ V ) |
| 11 |
|
ssv |
⊢ 𝐵 ⊆ V |
| 12 |
|
ssid |
⊢ 𝐵 ⊆ 𝐵 |
| 13 |
11 12
|
ssini |
⊢ 𝐵 ⊆ ( V ∩ 𝐵 ) |
| 14 |
|
inss2 |
⊢ ( V ∩ 𝐵 ) ⊆ 𝐵 |
| 15 |
13 14
|
eqssi |
⊢ 𝐵 = ( V ∩ 𝐵 ) |
| 16 |
10 15
|
xpeq12i |
⊢ ( V × 𝐵 ) = ( ( V ∩ V ) × ( V ∩ 𝐵 ) ) |
| 17 |
8 16
|
eqtr4i |
⊢ ( ( V × V ) ∩ ( V × 𝐵 ) ) = ( V × 𝐵 ) |
| 18 |
17
|
ineq2i |
⊢ ( 𝑅 ∩ ( ( V × V ) ∩ ( V × 𝐵 ) ) ) = ( 𝑅 ∩ ( V × 𝐵 ) ) |
| 19 |
6 7 18
|
3eqtri |
⊢ ( ◡ ◡ 𝑅 ∩ ◡ ( 𝐵 × V ) ) = ( 𝑅 ∩ ( V × 𝐵 ) ) |
| 20 |
2 3 19
|
3eqtri |
⊢ ◡ ( ◡ 𝑅 ↾ 𝐵 ) = ( 𝑅 ∩ ( V × 𝐵 ) ) |