Metamath Proof Explorer


Theorem cnvrescnv

Description: Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023)

Ref Expression
Assertion cnvrescnv R-1B-1=RV×B

Proof

Step Hyp Ref Expression
1 df-res R-1B=R-1B×V
2 1 cnveqi R-1B-1=R-1B×V-1
3 cnvin R-1B×V-1=R-1-1B×V-1
4 cnvcnv R-1-1=RV×V
5 cnvxp B×V-1=V×B
6 4 5 ineq12i R-1-1B×V-1=RV×VV×B
7 inass RV×VV×B=RV×VV×B
8 inxp V×VV×B=VV×VB
9 inv1 VV=V
10 9 eqcomi V=VV
11 ssv BV
12 ssid BB
13 11 12 ssini BVB
14 inss2 VBB
15 13 14 eqssi B=VB
16 10 15 xpeq12i V×B=VV×VB
17 8 16 eqtr4i V×VV×B=V×B
18 17 ineq2i RV×VV×B=RV×B
19 6 7 18 3eqtri R-1-1B×V-1=RV×B
20 2 3 19 3eqtri R-1B-1=RV×B