| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ima | ⊢ ( 𝑅  “  𝐴 )  =  ran  ( 𝑅  ↾  𝐴 ) | 
						
							| 2 | 1 | sseq1i | ⊢ ( ( 𝑅  “  𝐴 )  ⊆  𝐵  ↔  ran  ( 𝑅  ↾  𝐴 )  ⊆  𝐵 ) | 
						
							| 3 |  | dmres | ⊢ dom  ( 𝑅  ↾  𝐴 )  =  ( 𝐴  ∩  dom  𝑅 ) | 
						
							| 4 |  | inss1 | ⊢ ( 𝐴  ∩  dom  𝑅 )  ⊆  𝐴 | 
						
							| 5 | 3 4 | eqsstri | ⊢ dom  ( 𝑅  ↾  𝐴 )  ⊆  𝐴 | 
						
							| 6 | 5 | biantrur | ⊢ ( ran  ( 𝑅  ↾  𝐴 )  ⊆  𝐵  ↔  ( dom  ( 𝑅  ↾  𝐴 )  ⊆  𝐴  ∧  ran  ( 𝑅  ↾  𝐴 )  ⊆  𝐵 ) ) | 
						
							| 7 |  | relres | ⊢ Rel  ( 𝑅  ↾  𝐴 ) | 
						
							| 8 |  | relssdmrn | ⊢ ( Rel  ( 𝑅  ↾  𝐴 )  →  ( 𝑅  ↾  𝐴 )  ⊆  ( dom  ( 𝑅  ↾  𝐴 )  ×  ran  ( 𝑅  ↾  𝐴 ) ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( 𝑅  ↾  𝐴 )  ⊆  ( dom  ( 𝑅  ↾  𝐴 )  ×  ran  ( 𝑅  ↾  𝐴 ) ) | 
						
							| 10 |  | xpss12 | ⊢ ( ( dom  ( 𝑅  ↾  𝐴 )  ⊆  𝐴  ∧  ran  ( 𝑅  ↾  𝐴 )  ⊆  𝐵 )  →  ( dom  ( 𝑅  ↾  𝐴 )  ×  ran  ( 𝑅  ↾  𝐴 ) )  ⊆  ( 𝐴  ×  𝐵 ) ) | 
						
							| 11 | 9 10 | sstrid | ⊢ ( ( dom  ( 𝑅  ↾  𝐴 )  ⊆  𝐴  ∧  ran  ( 𝑅  ↾  𝐴 )  ⊆  𝐵 )  →  ( 𝑅  ↾  𝐴 )  ⊆  ( 𝐴  ×  𝐵 ) ) | 
						
							| 12 |  | dmss | ⊢ ( ( 𝑅  ↾  𝐴 )  ⊆  ( 𝐴  ×  𝐵 )  →  dom  ( 𝑅  ↾  𝐴 )  ⊆  dom  ( 𝐴  ×  𝐵 ) ) | 
						
							| 13 |  | dmxpss | ⊢ dom  ( 𝐴  ×  𝐵 )  ⊆  𝐴 | 
						
							| 14 | 12 13 | sstrdi | ⊢ ( ( 𝑅  ↾  𝐴 )  ⊆  ( 𝐴  ×  𝐵 )  →  dom  ( 𝑅  ↾  𝐴 )  ⊆  𝐴 ) | 
						
							| 15 |  | rnss | ⊢ ( ( 𝑅  ↾  𝐴 )  ⊆  ( 𝐴  ×  𝐵 )  →  ran  ( 𝑅  ↾  𝐴 )  ⊆  ran  ( 𝐴  ×  𝐵 ) ) | 
						
							| 16 |  | rnxpss | ⊢ ran  ( 𝐴  ×  𝐵 )  ⊆  𝐵 | 
						
							| 17 | 15 16 | sstrdi | ⊢ ( ( 𝑅  ↾  𝐴 )  ⊆  ( 𝐴  ×  𝐵 )  →  ran  ( 𝑅  ↾  𝐴 )  ⊆  𝐵 ) | 
						
							| 18 | 14 17 | jca | ⊢ ( ( 𝑅  ↾  𝐴 )  ⊆  ( 𝐴  ×  𝐵 )  →  ( dom  ( 𝑅  ↾  𝐴 )  ⊆  𝐴  ∧  ran  ( 𝑅  ↾  𝐴 )  ⊆  𝐵 ) ) | 
						
							| 19 | 11 18 | impbii | ⊢ ( ( dom  ( 𝑅  ↾  𝐴 )  ⊆  𝐴  ∧  ran  ( 𝑅  ↾  𝐴 )  ⊆  𝐵 )  ↔  ( 𝑅  ↾  𝐴 )  ⊆  ( 𝐴  ×  𝐵 ) ) | 
						
							| 20 | 2 6 19 | 3bitri | ⊢ ( ( 𝑅  “  𝐴 )  ⊆  𝐵  ↔  ( 𝑅  ↾  𝐴 )  ⊆  ( 𝐴  ×  𝐵 ) ) |