Step |
Hyp |
Ref |
Expression |
1 |
|
gsumzresunsn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumzresunsn.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
gsumzresunsn.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
4 |
|
gsumzresunsn.y |
⊢ 𝑌 = ( 𝐹 ‘ 𝑋 ) |
5 |
|
gsumzresunsn.f |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐵 ) |
6 |
|
gsumzresunsn.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
7 |
|
gsumzresunsn.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
8 |
|
gsumzresunsn.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
9 |
|
gsumzresunsn.2 |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝐴 ) |
10 |
|
gsumzresunsn.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) |
11 |
|
gsumzresunsn.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
12 |
|
gsumzresunsn.5 |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝐴 ∪ { 𝑋 } ) ) ⊆ ( 𝑍 ‘ ( 𝐹 “ ( 𝐴 ∪ { 𝑋 } ) ) ) ) |
13 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
14 |
|
df-ima |
⊢ ( 𝐹 “ ( 𝐴 ∪ { 𝑋 } ) ) = ran ( 𝐹 ↾ ( 𝐴 ∪ { 𝑋 } ) ) |
15 |
10
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝐶 ) |
16 |
6 15
|
unssd |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑋 } ) ⊆ 𝐶 ) |
17 |
5 16
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∪ { 𝑋 } ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
18 |
17
|
rneqd |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ( 𝐴 ∪ { 𝑋 } ) ) = ran ( 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
19 |
14 18
|
syl5eq |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝐴 ∪ { 𝑋 } ) ) = ran ( 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝜑 → ( 𝑍 ‘ ( 𝐹 “ ( 𝐴 ∪ { 𝑋 } ) ) ) = ( 𝑍 ‘ ran ( 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
21 |
12 19 20
|
3sstr3d |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐶 ⟶ 𝐵 ) |
23 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐶 ) |
24 |
22 23
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
27 |
26 4
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = 𝑌 ) |
28 |
1 2 3 13 7 8 21 24 10 9 11 27
|
gsumzunsnd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) + 𝑌 ) ) |
29 |
17
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ∪ { 𝑋 } ) ) ) = ( 𝐺 Σg ( 𝑥 ∈ ( 𝐴 ∪ { 𝑋 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
30 |
5 6
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐴 ) ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
32 |
31
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐴 ) ) + 𝑌 ) = ( ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) + 𝑌 ) ) |
33 |
28 29 32
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ∪ { 𝑋 } ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐴 ) ) + 𝑌 ) ) |