| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumzunsnd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumzunsnd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | gsumzunsnd.z | ⊢ 𝑍  =  ( Cntz ‘ 𝐺 ) | 
						
							| 4 |  | gsumzunsnd.f | ⊢ 𝐹  =  ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  ↦  𝑋 ) | 
						
							| 5 |  | gsumzunsnd.g | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 6 |  | gsumzunsnd.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 7 |  | gsumzunsnd.c | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 8 |  | gsumzunsnd.x | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑋  ∈  𝐵 ) | 
						
							| 9 |  | gsumzunsnd.m | ⊢ ( 𝜑  →  𝑀  ∈  𝑉 ) | 
						
							| 10 |  | gsumzunsnd.d | ⊢ ( 𝜑  →  ¬  𝑀  ∈  𝐴 ) | 
						
							| 11 |  | gsumzunsnd.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 12 |  | gsumzunsnd.s | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑀 )  →  𝑋  =  𝑌 ) | 
						
							| 13 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 14 |  | snfi | ⊢ { 𝑀 }  ∈  Fin | 
						
							| 15 |  | unfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  { 𝑀 }  ∈  Fin )  →  ( 𝐴  ∪  { 𝑀 } )  ∈  Fin ) | 
						
							| 16 | 6 14 15 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  ∪  { 𝑀 } )  ∈  Fin ) | 
						
							| 17 |  | elun | ⊢ ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  ↔  ( 𝑘  ∈  𝐴  ∨  𝑘  ∈  { 𝑀 } ) ) | 
						
							| 18 |  | elsni | ⊢ ( 𝑘  ∈  { 𝑀 }  →  𝑘  =  𝑀 ) | 
						
							| 19 | 18 12 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑀 } )  →  𝑋  =  𝑌 ) | 
						
							| 20 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑀 } )  →  𝑌  ∈  𝐵 ) | 
						
							| 21 | 19 20 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑀 } )  →  𝑋  ∈  𝐵 ) | 
						
							| 22 | 8 21 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐴  ∨  𝑘  ∈  { 𝑀 } ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 23 | 17 22 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∪  { 𝑀 } ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 24 | 23 4 | fmptd | ⊢ ( 𝜑  →  𝐹 : ( 𝐴  ∪  { 𝑀 } ) ⟶ 𝐵 ) | 
						
							| 25 | 8 | expcom | ⊢ ( 𝑘  ∈  𝐴  →  ( 𝜑  →  𝑋  ∈  𝐵 ) ) | 
						
							| 26 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑀 )  →  𝑌  ∈  𝐵 ) | 
						
							| 27 | 12 26 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑀 )  →  𝑋  ∈  𝐵 ) | 
						
							| 28 | 27 | expcom | ⊢ ( 𝑘  =  𝑀  →  ( 𝜑  →  𝑋  ∈  𝐵 ) ) | 
						
							| 29 | 18 28 | syl | ⊢ ( 𝑘  ∈  { 𝑀 }  →  ( 𝜑  →  𝑋  ∈  𝐵 ) ) | 
						
							| 30 | 25 29 | jaoi | ⊢ ( ( 𝑘  ∈  𝐴  ∨  𝑘  ∈  { 𝑀 } )  →  ( 𝜑  →  𝑋  ∈  𝐵 ) ) | 
						
							| 31 | 17 30 | sylbi | ⊢ ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  →  ( 𝜑  →  𝑋  ∈  𝐵 ) ) | 
						
							| 32 | 31 | impcom | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∪  { 𝑀 } ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 33 |  | fvexd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  ∈  V ) | 
						
							| 34 | 4 16 32 33 | fsuppmptdm | ⊢ ( 𝜑  →  𝐹  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 35 |  | disjsn | ⊢ ( ( 𝐴  ∩  { 𝑀 } )  =  ∅  ↔  ¬  𝑀  ∈  𝐴 ) | 
						
							| 36 | 10 35 | sylibr | ⊢ ( 𝜑  →  ( 𝐴  ∩  { 𝑀 } )  =  ∅ ) | 
						
							| 37 |  | eqidd | ⊢ ( 𝜑  →  ( 𝐴  ∪  { 𝑀 } )  =  ( 𝐴  ∪  { 𝑀 } ) ) | 
						
							| 38 | 1 13 2 3 5 16 24 7 34 36 37 | gsumzsplit | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ( ( 𝐺  Σg  ( 𝐹  ↾  𝐴 ) )  +  ( 𝐺  Σg  ( 𝐹  ↾  { 𝑀 } ) ) ) ) | 
						
							| 39 | 4 | reseq1i | ⊢ ( 𝐹  ↾  𝐴 )  =  ( ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  ↦  𝑋 )  ↾  𝐴 ) | 
						
							| 40 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  { 𝑀 } ) | 
						
							| 41 |  | resmpt | ⊢ ( 𝐴  ⊆  ( 𝐴  ∪  { 𝑀 } )  →  ( ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  ↦  𝑋 )  ↾  𝐴 )  =  ( 𝑘  ∈  𝐴  ↦  𝑋 ) ) | 
						
							| 42 | 40 41 | mp1i | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  ↦  𝑋 )  ↾  𝐴 )  =  ( 𝑘  ∈  𝐴  ↦  𝑋 ) ) | 
						
							| 43 | 39 42 | eqtrid | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐴 )  =  ( 𝑘  ∈  𝐴  ↦  𝑋 ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐹  ↾  𝐴 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) ) ) | 
						
							| 45 | 4 | reseq1i | ⊢ ( 𝐹  ↾  { 𝑀 } )  =  ( ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  ↦  𝑋 )  ↾  { 𝑀 } ) | 
						
							| 46 |  | ssun2 | ⊢ { 𝑀 }  ⊆  ( 𝐴  ∪  { 𝑀 } ) | 
						
							| 47 |  | resmpt | ⊢ ( { 𝑀 }  ⊆  ( 𝐴  ∪  { 𝑀 } )  →  ( ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  ↦  𝑋 )  ↾  { 𝑀 } )  =  ( 𝑘  ∈  { 𝑀 }  ↦  𝑋 ) ) | 
						
							| 48 | 46 47 | mp1i | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  ↦  𝑋 )  ↾  { 𝑀 } )  =  ( 𝑘  ∈  { 𝑀 }  ↦  𝑋 ) ) | 
						
							| 49 | 45 48 | eqtrid | ⊢ ( 𝜑  →  ( 𝐹  ↾  { 𝑀 } )  =  ( 𝑘  ∈  { 𝑀 }  ↦  𝑋 ) ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐹  ↾  { 𝑀 } ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑀 }  ↦  𝑋 ) ) ) | 
						
							| 51 | 44 50 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐺  Σg  ( 𝐹  ↾  𝐴 ) )  +  ( 𝐺  Σg  ( 𝐹  ↾  { 𝑀 } ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  +  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑀 }  ↦  𝑋 ) ) ) ) | 
						
							| 52 | 1 5 9 11 12 | gsumsnd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑀 }  ↦  𝑋 ) )  =  𝑌 ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  +  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑀 }  ↦  𝑋 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  +  𝑌 ) ) | 
						
							| 54 | 38 51 53 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  +  𝑌 ) ) |