| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1degltlss.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1degltlss.d |
|- D = ( deg1 ` R ) |
| 3 |
|
ply1degltlss.1 |
|- S = ( `' D " ( -oo [,) N ) ) |
| 4 |
|
ply1degltlss.3 |
|- ( ph -> N e. NN0 ) |
| 5 |
|
ply1degltlss.2 |
|- ( ph -> R e. Ring ) |
| 6 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 7 |
5 6
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
| 8 |
|
eqidd |
|- ( ph -> ( Base ` R ) = ( Base ` R ) ) |
| 9 |
|
eqidd |
|- ( ph -> ( Base ` P ) = ( Base ` P ) ) |
| 10 |
|
eqidd |
|- ( ph -> ( +g ` P ) = ( +g ` P ) ) |
| 11 |
|
eqidd |
|- ( ph -> ( .s ` P ) = ( .s ` P ) ) |
| 12 |
|
eqidd |
|- ( ph -> ( LSubSp ` P ) = ( LSubSp ` P ) ) |
| 13 |
|
cnvimass |
|- ( `' D " ( -oo [,) N ) ) C_ dom D |
| 14 |
3 13
|
eqsstri |
|- S C_ dom D |
| 15 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 16 |
2 1 15
|
deg1xrf |
|- D : ( Base ` P ) --> RR* |
| 17 |
16
|
fdmi |
|- dom D = ( Base ` P ) |
| 18 |
14 17
|
sseqtri |
|- S C_ ( Base ` P ) |
| 19 |
18
|
a1i |
|- ( ph -> S C_ ( Base ` P ) ) |
| 20 |
16
|
a1i |
|- ( ph -> D : ( Base ` P ) --> RR* ) |
| 21 |
20
|
ffnd |
|- ( ph -> D Fn ( Base ` P ) ) |
| 22 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 23 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 24 |
15 23
|
ring0cl |
|- ( P e. Ring -> ( 0g ` P ) e. ( Base ` P ) ) |
| 25 |
5 22 24
|
3syl |
|- ( ph -> ( 0g ` P ) e. ( Base ` P ) ) |
| 26 |
2 1 23
|
deg1z |
|- ( R e. Ring -> ( D ` ( 0g ` P ) ) = -oo ) |
| 27 |
5 26
|
syl |
|- ( ph -> ( D ` ( 0g ` P ) ) = -oo ) |
| 28 |
|
mnfxr |
|- -oo e. RR* |
| 29 |
28
|
a1i |
|- ( ph -> -oo e. RR* ) |
| 30 |
4
|
nn0red |
|- ( ph -> N e. RR ) |
| 31 |
30
|
rexrd |
|- ( ph -> N e. RR* ) |
| 32 |
29
|
xrleidd |
|- ( ph -> -oo <_ -oo ) |
| 33 |
30
|
mnfltd |
|- ( ph -> -oo < N ) |
| 34 |
29 31 29 32 33
|
elicod |
|- ( ph -> -oo e. ( -oo [,) N ) ) |
| 35 |
27 34
|
eqeltrd |
|- ( ph -> ( D ` ( 0g ` P ) ) e. ( -oo [,) N ) ) |
| 36 |
21 25 35
|
elpreimad |
|- ( ph -> ( 0g ` P ) e. ( `' D " ( -oo [,) N ) ) ) |
| 37 |
36 3
|
eleqtrrdi |
|- ( ph -> ( 0g ` P ) e. S ) |
| 38 |
37
|
ne0d |
|- ( ph -> S =/= (/) ) |
| 39 |
|
simpl |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> ph ) |
| 40 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
| 41 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 42 |
5 41
|
syl |
|- ( ph -> P e. LMod ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> P e. LMod ) |
| 44 |
43
|
lmodgrpd |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> P e. Grp ) |
| 45 |
|
simpr1 |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> x e. ( Base ` R ) ) |
| 46 |
7
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 47 |
46
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 48 |
45 47
|
eleqtrd |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> x e. ( Base ` ( Scalar ` P ) ) ) |
| 49 |
|
simpr2 |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> a e. S ) |
| 50 |
18 49
|
sselid |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> a e. ( Base ` P ) ) |
| 51 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 52 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
| 53 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
| 54 |
15 51 52 53
|
lmodvscl |
|- ( ( P e. LMod /\ x e. ( Base ` ( Scalar ` P ) ) /\ a e. ( Base ` P ) ) -> ( x ( .s ` P ) a ) e. ( Base ` P ) ) |
| 55 |
43 48 50 54
|
syl3anc |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> ( x ( .s ` P ) a ) e. ( Base ` P ) ) |
| 56 |
|
simpr3 |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> b e. S ) |
| 57 |
18 56
|
sselid |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> b e. ( Base ` P ) ) |
| 58 |
15 40 44 55 57
|
grpcld |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> ( ( x ( .s ` P ) a ) ( +g ` P ) b ) e. ( Base ` P ) ) |
| 59 |
5
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> R e. Ring ) |
| 60 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 61 |
30 60
|
resubcld |
|- ( ph -> ( N - 1 ) e. RR ) |
| 62 |
61
|
rexrd |
|- ( ph -> ( N - 1 ) e. RR* ) |
| 63 |
62
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> ( N - 1 ) e. RR* ) |
| 64 |
16
|
a1i |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> D : ( Base ` P ) --> RR* ) |
| 65 |
64 55
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> ( D ` ( x ( .s ` P ) a ) ) e. RR* ) |
| 66 |
64 50
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> ( D ` a ) e. RR* ) |
| 67 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 68 |
1 2 59 15 67 52 45 50
|
deg1vscale |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> ( D ` ( x ( .s ` P ) a ) ) <_ ( D ` a ) ) |
| 69 |
1 2 3 4 5 15
|
ply1degltel |
|- ( ph -> ( a e. S <-> ( a e. ( Base ` P ) /\ ( D ` a ) <_ ( N - 1 ) ) ) ) |
| 70 |
69
|
simplbda |
|- ( ( ph /\ a e. S ) -> ( D ` a ) <_ ( N - 1 ) ) |
| 71 |
49 70
|
syldan |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> ( D ` a ) <_ ( N - 1 ) ) |
| 72 |
65 66 63 68 71
|
xrletrd |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> ( D ` ( x ( .s ` P ) a ) ) <_ ( N - 1 ) ) |
| 73 |
1 2 3 4 5 15
|
ply1degltel |
|- ( ph -> ( b e. S <-> ( b e. ( Base ` P ) /\ ( D ` b ) <_ ( N - 1 ) ) ) ) |
| 74 |
73
|
simplbda |
|- ( ( ph /\ b e. S ) -> ( D ` b ) <_ ( N - 1 ) ) |
| 75 |
56 74
|
syldan |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> ( D ` b ) <_ ( N - 1 ) ) |
| 76 |
1 2 59 15 40 55 57 63 72 75
|
deg1addle2 |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> ( D ` ( ( x ( .s ` P ) a ) ( +g ` P ) b ) ) <_ ( N - 1 ) ) |
| 77 |
1 2 3 4 5 15
|
ply1degltel |
|- ( ph -> ( ( ( x ( .s ` P ) a ) ( +g ` P ) b ) e. S <-> ( ( ( x ( .s ` P ) a ) ( +g ` P ) b ) e. ( Base ` P ) /\ ( D ` ( ( x ( .s ` P ) a ) ( +g ` P ) b ) ) <_ ( N - 1 ) ) ) ) |
| 78 |
77
|
biimpar |
|- ( ( ph /\ ( ( ( x ( .s ` P ) a ) ( +g ` P ) b ) e. ( Base ` P ) /\ ( D ` ( ( x ( .s ` P ) a ) ( +g ` P ) b ) ) <_ ( N - 1 ) ) ) -> ( ( x ( .s ` P ) a ) ( +g ` P ) b ) e. S ) |
| 79 |
39 58 76 78
|
syl12anc |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. S /\ b e. S ) ) -> ( ( x ( .s ` P ) a ) ( +g ` P ) b ) e. S ) |
| 80 |
7 8 9 10 11 12 19 38 79
|
islssd |
|- ( ph -> S e. ( LSubSp ` P ) ) |