| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1degltlss.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1degltlss.d |
|- D = ( deg1 ` R ) |
| 3 |
|
ply1degltlss.1 |
|- S = ( `' D " ( -oo [,) N ) ) |
| 4 |
|
ply1degltlss.3 |
|- ( ph -> N e. NN0 ) |
| 5 |
|
ply1degltlss.2 |
|- ( ph -> R e. Ring ) |
| 6 |
|
ply1degltel.1 |
|- B = ( Base ` P ) |
| 7 |
|
simpr |
|- ( ( ph /\ F = ( 0g ` P ) ) -> F = ( 0g ` P ) ) |
| 8 |
2 1 6
|
deg1xrf |
|- D : B --> RR* |
| 9 |
8
|
a1i |
|- ( ph -> D : B --> RR* ) |
| 10 |
9
|
ffnd |
|- ( ph -> D Fn B ) |
| 11 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 12 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 13 |
6 12
|
ring0cl |
|- ( P e. Ring -> ( 0g ` P ) e. B ) |
| 14 |
5 11 13
|
3syl |
|- ( ph -> ( 0g ` P ) e. B ) |
| 15 |
2 1 12
|
deg1z |
|- ( R e. Ring -> ( D ` ( 0g ` P ) ) = -oo ) |
| 16 |
5 15
|
syl |
|- ( ph -> ( D ` ( 0g ` P ) ) = -oo ) |
| 17 |
|
mnfxr |
|- -oo e. RR* |
| 18 |
17
|
a1i |
|- ( ph -> -oo e. RR* ) |
| 19 |
4
|
nn0red |
|- ( ph -> N e. RR ) |
| 20 |
19
|
rexrd |
|- ( ph -> N e. RR* ) |
| 21 |
18
|
xrleidd |
|- ( ph -> -oo <_ -oo ) |
| 22 |
19
|
mnfltd |
|- ( ph -> -oo < N ) |
| 23 |
18 20 18 21 22
|
elicod |
|- ( ph -> -oo e. ( -oo [,) N ) ) |
| 24 |
16 23
|
eqeltrd |
|- ( ph -> ( D ` ( 0g ` P ) ) e. ( -oo [,) N ) ) |
| 25 |
10 14 24
|
elpreimad |
|- ( ph -> ( 0g ` P ) e. ( `' D " ( -oo [,) N ) ) ) |
| 26 |
25 3
|
eleqtrrdi |
|- ( ph -> ( 0g ` P ) e. S ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( 0g ` P ) e. S ) |
| 28 |
7 27
|
eqeltrd |
|- ( ( ph /\ F = ( 0g ` P ) ) -> F e. S ) |
| 29 |
|
cnvimass |
|- ( `' D " ( -oo [,) N ) ) C_ dom D |
| 30 |
3 29
|
eqsstri |
|- S C_ dom D |
| 31 |
8
|
fdmi |
|- dom D = B |
| 32 |
30 31
|
sseqtri |
|- S C_ B |
| 33 |
32 28
|
sselid |
|- ( ( ph /\ F = ( 0g ` P ) ) -> F e. B ) |
| 34 |
7
|
fveq2d |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( D ` F ) = ( D ` ( 0g ` P ) ) ) |
| 35 |
16
|
adantr |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( D ` ( 0g ` P ) ) = -oo ) |
| 36 |
34 35
|
eqtrd |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( D ` F ) = -oo ) |
| 37 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 38 |
19 37
|
resubcld |
|- ( ph -> ( N - 1 ) e. RR ) |
| 39 |
38
|
rexrd |
|- ( ph -> ( N - 1 ) e. RR* ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( N - 1 ) e. RR* ) |
| 41 |
40
|
mnfled |
|- ( ( ph /\ F = ( 0g ` P ) ) -> -oo <_ ( N - 1 ) ) |
| 42 |
36 41
|
eqbrtrd |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( D ` F ) <_ ( N - 1 ) ) |
| 43 |
|
pm5.1 |
|- ( ( F e. S /\ ( F e. B /\ ( D ` F ) <_ ( N - 1 ) ) ) -> ( F e. S <-> ( F e. B /\ ( D ` F ) <_ ( N - 1 ) ) ) ) |
| 44 |
28 33 42 43
|
syl12anc |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( F e. S <-> ( F e. B /\ ( D ` F ) <_ ( N - 1 ) ) ) ) |
| 45 |
3
|
eleq2i |
|- ( F e. S <-> F e. ( `' D " ( -oo [,) N ) ) ) |
| 46 |
10
|
adantr |
|- ( ( ph /\ F =/= ( 0g ` P ) ) -> D Fn B ) |
| 47 |
|
elpreima |
|- ( D Fn B -> ( F e. ( `' D " ( -oo [,) N ) ) <-> ( F e. B /\ ( D ` F ) e. ( -oo [,) N ) ) ) ) |
| 48 |
46 47
|
syl |
|- ( ( ph /\ F =/= ( 0g ` P ) ) -> ( F e. ( `' D " ( -oo [,) N ) ) <-> ( F e. B /\ ( D ` F ) e. ( -oo [,) N ) ) ) ) |
| 49 |
45 48
|
bitrid |
|- ( ( ph /\ F =/= ( 0g ` P ) ) -> ( F e. S <-> ( F e. B /\ ( D ` F ) e. ( -oo [,) N ) ) ) ) |
| 50 |
17
|
a1i |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> -oo e. RR* ) |
| 51 |
20
|
ad2antrr |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> N e. RR* ) |
| 52 |
|
elico1 |
|- ( ( -oo e. RR* /\ N e. RR* ) -> ( ( D ` F ) e. ( -oo [,) N ) <-> ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) /\ ( D ` F ) < N ) ) ) |
| 53 |
50 51 52
|
syl2anc |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( ( D ` F ) e. ( -oo [,) N ) <-> ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) /\ ( D ` F ) < N ) ) ) |
| 54 |
|
df-3an |
|- ( ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) /\ ( D ` F ) < N ) <-> ( ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) ) /\ ( D ` F ) < N ) ) |
| 55 |
53 54
|
bitrdi |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( ( D ` F ) e. ( -oo [,) N ) <-> ( ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) ) /\ ( D ` F ) < N ) ) ) |
| 56 |
5
|
ad2antrr |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> R e. Ring ) |
| 57 |
|
simpr |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> F e. B ) |
| 58 |
|
simplr |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> F =/= ( 0g ` P ) ) |
| 59 |
2 1 12 6
|
deg1nn0cl |
|- ( ( R e. Ring /\ F e. B /\ F =/= ( 0g ` P ) ) -> ( D ` F ) e. NN0 ) |
| 60 |
56 57 58 59
|
syl3anc |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( D ` F ) e. NN0 ) |
| 61 |
60
|
nn0red |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( D ` F ) e. RR ) |
| 62 |
61
|
rexrd |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( D ` F ) e. RR* ) |
| 63 |
62
|
mnfled |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> -oo <_ ( D ` F ) ) |
| 64 |
62 63
|
jca |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) ) ) |
| 65 |
64
|
biantrurd |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( ( D ` F ) < N <-> ( ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) ) /\ ( D ` F ) < N ) ) ) |
| 66 |
60
|
nn0zd |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( D ` F ) e. ZZ ) |
| 67 |
4
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 68 |
67
|
ad2antrr |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> N e. ZZ ) |
| 69 |
|
zltlem1 |
|- ( ( ( D ` F ) e. ZZ /\ N e. ZZ ) -> ( ( D ` F ) < N <-> ( D ` F ) <_ ( N - 1 ) ) ) |
| 70 |
66 68 69
|
syl2anc |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( ( D ` F ) < N <-> ( D ` F ) <_ ( N - 1 ) ) ) |
| 71 |
55 65 70
|
3bitr2d |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( ( D ` F ) e. ( -oo [,) N ) <-> ( D ` F ) <_ ( N - 1 ) ) ) |
| 72 |
71
|
pm5.32da |
|- ( ( ph /\ F =/= ( 0g ` P ) ) -> ( ( F e. B /\ ( D ` F ) e. ( -oo [,) N ) ) <-> ( F e. B /\ ( D ` F ) <_ ( N - 1 ) ) ) ) |
| 73 |
49 72
|
bitrd |
|- ( ( ph /\ F =/= ( 0g ` P ) ) -> ( F e. S <-> ( F e. B /\ ( D ` F ) <_ ( N - 1 ) ) ) ) |
| 74 |
44 73
|
pm2.61dane |
|- ( ph -> ( F e. S <-> ( F e. B /\ ( D ` F ) <_ ( N - 1 ) ) ) ) |