Step |
Hyp |
Ref |
Expression |
1 |
|
ply1degltlss.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1degltlss.d |
|- D = ( deg1 ` R ) |
3 |
|
ply1degltlss.1 |
|- S = ( `' D " ( -oo [,) N ) ) |
4 |
|
ply1degltlss.3 |
|- ( ph -> N e. NN0 ) |
5 |
|
ply1degltlss.2 |
|- ( ph -> R e. Ring ) |
6 |
|
ply1degltel.1 |
|- B = ( Base ` P ) |
7 |
|
simpr |
|- ( ( ph /\ F = ( 0g ` P ) ) -> F = ( 0g ` P ) ) |
8 |
2 1 6
|
deg1xrf |
|- D : B --> RR* |
9 |
8
|
a1i |
|- ( ph -> D : B --> RR* ) |
10 |
9
|
ffnd |
|- ( ph -> D Fn B ) |
11 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
12 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
13 |
6 12
|
ring0cl |
|- ( P e. Ring -> ( 0g ` P ) e. B ) |
14 |
5 11 13
|
3syl |
|- ( ph -> ( 0g ` P ) e. B ) |
15 |
2 1 12
|
deg1z |
|- ( R e. Ring -> ( D ` ( 0g ` P ) ) = -oo ) |
16 |
5 15
|
syl |
|- ( ph -> ( D ` ( 0g ` P ) ) = -oo ) |
17 |
|
mnfxr |
|- -oo e. RR* |
18 |
17
|
a1i |
|- ( ph -> -oo e. RR* ) |
19 |
4
|
nn0red |
|- ( ph -> N e. RR ) |
20 |
19
|
rexrd |
|- ( ph -> N e. RR* ) |
21 |
18
|
xrleidd |
|- ( ph -> -oo <_ -oo ) |
22 |
19
|
mnfltd |
|- ( ph -> -oo < N ) |
23 |
18 20 18 21 22
|
elicod |
|- ( ph -> -oo e. ( -oo [,) N ) ) |
24 |
16 23
|
eqeltrd |
|- ( ph -> ( D ` ( 0g ` P ) ) e. ( -oo [,) N ) ) |
25 |
10 14 24
|
elpreimad |
|- ( ph -> ( 0g ` P ) e. ( `' D " ( -oo [,) N ) ) ) |
26 |
25 3
|
eleqtrrdi |
|- ( ph -> ( 0g ` P ) e. S ) |
27 |
26
|
adantr |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( 0g ` P ) e. S ) |
28 |
7 27
|
eqeltrd |
|- ( ( ph /\ F = ( 0g ` P ) ) -> F e. S ) |
29 |
|
cnvimass |
|- ( `' D " ( -oo [,) N ) ) C_ dom D |
30 |
3 29
|
eqsstri |
|- S C_ dom D |
31 |
8
|
fdmi |
|- dom D = B |
32 |
30 31
|
sseqtri |
|- S C_ B |
33 |
32 28
|
sselid |
|- ( ( ph /\ F = ( 0g ` P ) ) -> F e. B ) |
34 |
7
|
fveq2d |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( D ` F ) = ( D ` ( 0g ` P ) ) ) |
35 |
16
|
adantr |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( D ` ( 0g ` P ) ) = -oo ) |
36 |
34 35
|
eqtrd |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( D ` F ) = -oo ) |
37 |
|
1red |
|- ( ph -> 1 e. RR ) |
38 |
19 37
|
resubcld |
|- ( ph -> ( N - 1 ) e. RR ) |
39 |
38
|
rexrd |
|- ( ph -> ( N - 1 ) e. RR* ) |
40 |
39
|
adantr |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( N - 1 ) e. RR* ) |
41 |
40
|
mnfled |
|- ( ( ph /\ F = ( 0g ` P ) ) -> -oo <_ ( N - 1 ) ) |
42 |
36 41
|
eqbrtrd |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( D ` F ) <_ ( N - 1 ) ) |
43 |
|
pm5.1 |
|- ( ( F e. S /\ ( F e. B /\ ( D ` F ) <_ ( N - 1 ) ) ) -> ( F e. S <-> ( F e. B /\ ( D ` F ) <_ ( N - 1 ) ) ) ) |
44 |
28 33 42 43
|
syl12anc |
|- ( ( ph /\ F = ( 0g ` P ) ) -> ( F e. S <-> ( F e. B /\ ( D ` F ) <_ ( N - 1 ) ) ) ) |
45 |
3
|
eleq2i |
|- ( F e. S <-> F e. ( `' D " ( -oo [,) N ) ) ) |
46 |
10
|
adantr |
|- ( ( ph /\ F =/= ( 0g ` P ) ) -> D Fn B ) |
47 |
|
elpreima |
|- ( D Fn B -> ( F e. ( `' D " ( -oo [,) N ) ) <-> ( F e. B /\ ( D ` F ) e. ( -oo [,) N ) ) ) ) |
48 |
46 47
|
syl |
|- ( ( ph /\ F =/= ( 0g ` P ) ) -> ( F e. ( `' D " ( -oo [,) N ) ) <-> ( F e. B /\ ( D ` F ) e. ( -oo [,) N ) ) ) ) |
49 |
45 48
|
bitrid |
|- ( ( ph /\ F =/= ( 0g ` P ) ) -> ( F e. S <-> ( F e. B /\ ( D ` F ) e. ( -oo [,) N ) ) ) ) |
50 |
17
|
a1i |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> -oo e. RR* ) |
51 |
20
|
ad2antrr |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> N e. RR* ) |
52 |
|
elico1 |
|- ( ( -oo e. RR* /\ N e. RR* ) -> ( ( D ` F ) e. ( -oo [,) N ) <-> ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) /\ ( D ` F ) < N ) ) ) |
53 |
50 51 52
|
syl2anc |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( ( D ` F ) e. ( -oo [,) N ) <-> ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) /\ ( D ` F ) < N ) ) ) |
54 |
|
df-3an |
|- ( ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) /\ ( D ` F ) < N ) <-> ( ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) ) /\ ( D ` F ) < N ) ) |
55 |
53 54
|
bitrdi |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( ( D ` F ) e. ( -oo [,) N ) <-> ( ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) ) /\ ( D ` F ) < N ) ) ) |
56 |
5
|
ad2antrr |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> R e. Ring ) |
57 |
|
simpr |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> F e. B ) |
58 |
|
simplr |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> F =/= ( 0g ` P ) ) |
59 |
2 1 12 6
|
deg1nn0cl |
|- ( ( R e. Ring /\ F e. B /\ F =/= ( 0g ` P ) ) -> ( D ` F ) e. NN0 ) |
60 |
56 57 58 59
|
syl3anc |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( D ` F ) e. NN0 ) |
61 |
60
|
nn0red |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( D ` F ) e. RR ) |
62 |
61
|
rexrd |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( D ` F ) e. RR* ) |
63 |
62
|
mnfled |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> -oo <_ ( D ` F ) ) |
64 |
62 63
|
jca |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) ) ) |
65 |
64
|
biantrurd |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( ( D ` F ) < N <-> ( ( ( D ` F ) e. RR* /\ -oo <_ ( D ` F ) ) /\ ( D ` F ) < N ) ) ) |
66 |
60
|
nn0zd |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( D ` F ) e. ZZ ) |
67 |
4
|
nn0zd |
|- ( ph -> N e. ZZ ) |
68 |
67
|
ad2antrr |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> N e. ZZ ) |
69 |
|
zltlem1 |
|- ( ( ( D ` F ) e. ZZ /\ N e. ZZ ) -> ( ( D ` F ) < N <-> ( D ` F ) <_ ( N - 1 ) ) ) |
70 |
66 68 69
|
syl2anc |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( ( D ` F ) < N <-> ( D ` F ) <_ ( N - 1 ) ) ) |
71 |
55 65 70
|
3bitr2d |
|- ( ( ( ph /\ F =/= ( 0g ` P ) ) /\ F e. B ) -> ( ( D ` F ) e. ( -oo [,) N ) <-> ( D ` F ) <_ ( N - 1 ) ) ) |
72 |
71
|
pm5.32da |
|- ( ( ph /\ F =/= ( 0g ` P ) ) -> ( ( F e. B /\ ( D ` F ) e. ( -oo [,) N ) ) <-> ( F e. B /\ ( D ` F ) <_ ( N - 1 ) ) ) ) |
73 |
49 72
|
bitrd |
|- ( ( ph /\ F =/= ( 0g ` P ) ) -> ( F e. S <-> ( F e. B /\ ( D ` F ) <_ ( N - 1 ) ) ) ) |
74 |
44 73
|
pm2.61dane |
|- ( ph -> ( F e. S <-> ( F e. B /\ ( D ` F ) <_ ( N - 1 ) ) ) ) |