| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1pw.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 2 |
|
deg1pw.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
deg1pw.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 4 |
|
deg1pw.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) |
| 5 |
|
deg1pw.e |
⊢ ↑ = ( .g ‘ 𝑁 ) |
| 6 |
2
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 8 |
2 3 4 5 7
|
ply1moncl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → ( 𝐹 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 9 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 10 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 11 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) |
| 12 |
7 9 10 11
|
lmodvs1 |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝐹 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↑ 𝑋 ) ) = ( 𝐹 ↑ 𝑋 ) ) |
| 13 |
6 8 12
|
syl2an2r |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↑ 𝑋 ) ) = ( 𝐹 ↑ 𝑋 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↑ 𝑋 ) ) ) = ( 𝐷 ‘ ( 𝐹 ↑ 𝑋 ) ) ) |
| 15 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 16 |
2
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 19 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 20 |
18 19
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 21 |
17 20
|
eqeltrrd |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 23 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → 𝐹 ∈ ℕ0 ) |
| 24 |
1 18 2 3 10 4 5
|
deg1tmle |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ∈ ( Base ‘ 𝑅 ) ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↑ 𝑋 ) ) ) ≤ 𝐹 ) |
| 25 |
15 22 23 24
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↑ 𝑋 ) ) ) ≤ 𝐹 ) |
| 26 |
14 25
|
eqbrtrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐹 ↑ 𝑋 ) ) ≤ 𝐹 ) |