Metamath Proof Explorer


Theorem deg1pwle

Description: Limiting degree of a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1pw.d D=deg1R
deg1pw.p P=Poly1R
deg1pw.x X=var1R
deg1pw.n N=mulGrpP
deg1pw.e ×˙=N
Assertion deg1pwle RRingF0DF×˙XF

Proof

Step Hyp Ref Expression
1 deg1pw.d D=deg1R
2 deg1pw.p P=Poly1R
3 deg1pw.x X=var1R
4 deg1pw.n N=mulGrpP
5 deg1pw.e ×˙=N
6 2 ply1lmod RRingPLMod
7 eqid BaseP=BaseP
8 2 3 4 5 7 ply1moncl RRingF0F×˙XBaseP
9 eqid ScalarP=ScalarP
10 eqid P=P
11 eqid 1ScalarP=1ScalarP
12 7 9 10 11 lmodvs1 PLModF×˙XBaseP1ScalarPPF×˙X=F×˙X
13 6 8 12 syl2an2r RRingF01ScalarPPF×˙X=F×˙X
14 13 fveq2d RRingF0D1ScalarPPF×˙X=DF×˙X
15 simpl RRingF0RRing
16 2 ply1sca RRingR=ScalarP
17 16 fveq2d RRing1R=1ScalarP
18 eqid BaseR=BaseR
19 eqid 1R=1R
20 18 19 ringidcl RRing1RBaseR
21 17 20 eqeltrrd RRing1ScalarPBaseR
22 21 adantr RRingF01ScalarPBaseR
23 simpr RRingF0F0
24 1 18 2 3 10 4 5 deg1tmle RRing1ScalarPBaseRF0D1ScalarPPF×˙XF
25 15 22 23 24 syl3anc RRingF0D1ScalarPPF×˙XF
26 14 25 eqbrtrrd RRingF0DF×˙XF