| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhmimasplusg.w |
|- W = ( F "s V ) |
| 2 |
|
mhmimasplusg.b |
|- B = ( Base ` V ) |
| 3 |
|
mhmimasplusg.c |
|- C = ( Base ` W ) |
| 4 |
|
mhmimasplusg.x |
|- ( ph -> X e. B ) |
| 5 |
|
mhmimasplusg.y |
|- ( ph -> Y e. B ) |
| 6 |
|
mhmimasplusg.1 |
|- ( ph -> F : B -onto-> C ) |
| 7 |
|
mhmimasplusg.f |
|- ( ph -> F e. ( V MndHom W ) ) |
| 8 |
|
mhmimasplusg.2 |
|- .+ = ( +g ` V ) |
| 9 |
|
mhmimasplusg.3 |
|- .+^ = ( +g ` W ) |
| 10 |
|
simprl |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) /\ ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) ) -> ( F ` a ) = ( F ` p ) ) |
| 11 |
|
simprr |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) /\ ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) ) -> ( F ` b ) = ( F ` q ) ) |
| 12 |
10 11
|
oveq12d |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) /\ ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) ) -> ( ( F ` a ) .+^ ( F ` b ) ) = ( ( F ` p ) .+^ ( F ` q ) ) ) |
| 13 |
7
|
3ad2ant1 |
|- ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) -> F e. ( V MndHom W ) ) |
| 14 |
13
|
adantr |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) /\ ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) ) -> F e. ( V MndHom W ) ) |
| 15 |
|
simpl2l |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) /\ ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) ) -> a e. B ) |
| 16 |
|
simpl2r |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) /\ ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) ) -> b e. B ) |
| 17 |
2 8 9
|
mhmlin |
|- ( ( F e. ( V MndHom W ) /\ a e. B /\ b e. B ) -> ( F ` ( a .+ b ) ) = ( ( F ` a ) .+^ ( F ` b ) ) ) |
| 18 |
14 15 16 17
|
syl3anc |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) /\ ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) ) -> ( F ` ( a .+ b ) ) = ( ( F ` a ) .+^ ( F ` b ) ) ) |
| 19 |
|
simpl3l |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) /\ ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) ) -> p e. B ) |
| 20 |
|
simpl3r |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) /\ ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) ) -> q e. B ) |
| 21 |
2 8 9
|
mhmlin |
|- ( ( F e. ( V MndHom W ) /\ p e. B /\ q e. B ) -> ( F ` ( p .+ q ) ) = ( ( F ` p ) .+^ ( F ` q ) ) ) |
| 22 |
14 19 20 21
|
syl3anc |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) /\ ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) ) -> ( F ` ( p .+ q ) ) = ( ( F ` p ) .+^ ( F ` q ) ) ) |
| 23 |
12 18 22
|
3eqtr4d |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) /\ ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) |
| 24 |
23
|
ex |
|- ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
| 25 |
1
|
a1i |
|- ( ph -> W = ( F "s V ) ) |
| 26 |
2
|
a1i |
|- ( ph -> B = ( Base ` V ) ) |
| 27 |
|
mhmrcl1 |
|- ( F e. ( V MndHom W ) -> V e. Mnd ) |
| 28 |
7 27
|
syl |
|- ( ph -> V e. Mnd ) |
| 29 |
6 24 25 26 28 8 9
|
imasaddval |
|- ( ( ph /\ X e. B /\ Y e. B ) -> ( ( F ` X ) .+^ ( F ` Y ) ) = ( F ` ( X .+ Y ) ) ) |
| 30 |
4 5 29
|
mpd3an23 |
|- ( ph -> ( ( F ` X ) .+^ ( F ` Y ) ) = ( F ` ( X .+ Y ) ) ) |