Step |
Hyp |
Ref |
Expression |
1 |
|
irredminply.o |
|- O = ( E evalSub1 F ) |
2 |
|
irredminply.p |
|- P = ( Poly1 ` ( E |`s F ) ) |
3 |
|
irredminply.b |
|- B = ( Base ` E ) |
4 |
|
irredminply.e |
|- ( ph -> E e. Field ) |
5 |
|
irredminply.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
6 |
|
irredminply.a |
|- ( ph -> A e. B ) |
7 |
|
irredminply.0 |
|- .0. = ( 0g ` E ) |
8 |
|
irredminply.m |
|- M = ( E minPoly F ) |
9 |
|
irredminply.z |
|- Z = ( 0g ` P ) |
10 |
|
irredminply.1 |
|- ( ph -> ( ( O ` G ) ` A ) = .0. ) |
11 |
|
irredminply.2 |
|- ( ph -> G e. ( Irred ` P ) ) |
12 |
|
irredminply.3 |
|- ( ph -> G e. ( Monic1p ` ( E |`s F ) ) ) |
13 |
|
eqid |
|- ( Monic1p ` ( E |`s F ) ) = ( Monic1p ` ( E |`s F ) ) |
14 |
|
eqid |
|- ( Unit ` P ) = ( Unit ` P ) |
15 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
16 |
|
fldsdrgfld |
|- ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field ) |
17 |
4 5 16
|
syl2anc |
|- ( ph -> ( E |`s F ) e. Field ) |
18 |
|
eqid |
|- ( 0g ` ( Poly1 ` E ) ) = ( 0g ` ( Poly1 ` E ) ) |
19 |
|
fveq2 |
|- ( g = G -> ( O ` g ) = ( O ` G ) ) |
20 |
19
|
fveq1d |
|- ( g = G -> ( ( O ` g ) ` A ) = ( ( O ` G ) ` A ) ) |
21 |
20
|
eqeq1d |
|- ( g = G -> ( ( ( O ` g ) ` A ) = .0. <-> ( ( O ` G ) ` A ) = .0. ) ) |
22 |
21 12 10
|
rspcedvdw |
|- ( ph -> E. g e. ( Monic1p ` ( E |`s F ) ) ( ( O ` g ) ` A ) = .0. ) |
23 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
24 |
4
|
fldcrngd |
|- ( ph -> E e. CRing ) |
25 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
26 |
5 25
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
27 |
1 23 3 7 24 26
|
elirng |
|- ( ph -> ( A e. ( E IntgRing F ) <-> ( A e. B /\ E. g e. ( Monic1p ` ( E |`s F ) ) ( ( O ` g ) ` A ) = .0. ) ) ) |
28 |
6 22 27
|
mpbir2and |
|- ( ph -> A e. ( E IntgRing F ) ) |
29 |
18 4 5 8 28 13
|
minplym1p |
|- ( ph -> ( M ` A ) e. ( Monic1p ` ( E |`s F ) ) ) |
30 |
23
|
sdrgdrng |
|- ( F e. ( SubDRing ` E ) -> ( E |`s F ) e. DivRing ) |
31 |
5 30
|
syl |
|- ( ph -> ( E |`s F ) e. DivRing ) |
32 |
31
|
drngringd |
|- ( ph -> ( E |`s F ) e. Ring ) |
33 |
|
eqid |
|- ( Irred ` P ) = ( Irred ` P ) |
34 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
35 |
33 34
|
irredcl |
|- ( G e. ( Irred ` P ) -> G e. ( Base ` P ) ) |
36 |
11 35
|
syl |
|- ( ph -> G e. ( Base ` P ) ) |
37 |
2 34 13
|
mon1pcl |
|- ( ( M ` A ) e. ( Monic1p ` ( E |`s F ) ) -> ( M ` A ) e. ( Base ` P ) ) |
38 |
29 37
|
syl |
|- ( ph -> ( M ` A ) e. ( Base ` P ) ) |
39 |
18 4 5 8 28
|
irngnminplynz |
|- ( ph -> ( M ` A ) =/= ( 0g ` ( Poly1 ` E ) ) ) |
40 |
|
eqid |
|- ( Poly1 ` E ) = ( Poly1 ` E ) |
41 |
40 23 2 34 26 18
|
ressply10g |
|- ( ph -> ( 0g ` ( Poly1 ` E ) ) = ( 0g ` P ) ) |
42 |
9 41
|
eqtr4id |
|- ( ph -> Z = ( 0g ` ( Poly1 ` E ) ) ) |
43 |
39 42
|
neeqtrrd |
|- ( ph -> ( M ` A ) =/= Z ) |
44 |
|
eqid |
|- ( Unic1p ` ( E |`s F ) ) = ( Unic1p ` ( E |`s F ) ) |
45 |
2 34 9 44
|
drnguc1p |
|- ( ( ( E |`s F ) e. DivRing /\ ( M ` A ) e. ( Base ` P ) /\ ( M ` A ) =/= Z ) -> ( M ` A ) e. ( Unic1p ` ( E |`s F ) ) ) |
46 |
31 38 43 45
|
syl3anc |
|- ( ph -> ( M ` A ) e. ( Unic1p ` ( E |`s F ) ) ) |
47 |
|
eqidd |
|- ( ph -> ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) = ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ) |
48 |
|
eqid |
|- ( quot1p ` ( E |`s F ) ) = ( quot1p ` ( E |`s F ) ) |
49 |
|
eqid |
|- ( deg1 ` ( E |`s F ) ) = ( deg1 ` ( E |`s F ) ) |
50 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
51 |
48 2 34 49 50 15 44
|
q1peqb |
|- ( ( ( E |`s F ) e. Ring /\ G e. ( Base ` P ) /\ ( M ` A ) e. ( Unic1p ` ( E |`s F ) ) ) -> ( ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Base ` P ) /\ ( ( deg1 ` ( E |`s F ) ) ` ( G ( -g ` P ) ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) ) < ( ( deg1 ` ( E |`s F ) ) ` ( M ` A ) ) ) <-> ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) = ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ) ) |
52 |
51
|
biimpar |
|- ( ( ( ( E |`s F ) e. Ring /\ G e. ( Base ` P ) /\ ( M ` A ) e. ( Unic1p ` ( E |`s F ) ) ) /\ ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) = ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ) -> ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Base ` P ) /\ ( ( deg1 ` ( E |`s F ) ) ` ( G ( -g ` P ) ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) ) < ( ( deg1 ` ( E |`s F ) ) ` ( M ` A ) ) ) ) |
53 |
32 36 46 47 52
|
syl31anc |
|- ( ph -> ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Base ` P ) /\ ( ( deg1 ` ( E |`s F ) ) ` ( G ( -g ` P ) ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) ) < ( ( deg1 ` ( E |`s F ) ) ` ( M ` A ) ) ) ) |
54 |
53
|
simpld |
|- ( ph -> ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Base ` P ) ) |
55 |
|
eqid |
|- ( rem1p ` ( E |`s F ) ) = ( rem1p ` ( E |`s F ) ) |
56 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
57 |
2 34 44 48 55 15 56
|
r1pid |
|- ( ( ( E |`s F ) e. Ring /\ G e. ( Base ` P ) /\ ( M ` A ) e. ( Unic1p ` ( E |`s F ) ) ) -> G = ( ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ( +g ` P ) ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) ) |
58 |
32 36 46 57
|
syl3anc |
|- ( ph -> G = ( ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ( +g ` P ) ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) ) |
59 |
55 2 34 44 49
|
r1pdeglt |
|- ( ( ( E |`s F ) e. Ring /\ G e. ( Base ` P ) /\ ( M ` A ) e. ( Unic1p ` ( E |`s F ) ) ) -> ( ( deg1 ` ( E |`s F ) ) ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) < ( ( deg1 ` ( E |`s F ) ) ` ( M ` A ) ) ) |
60 |
32 36 46 59
|
syl3anc |
|- ( ph -> ( ( deg1 ` ( E |`s F ) ) ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) < ( ( deg1 ` ( E |`s F ) ) ` ( M ` A ) ) ) |
61 |
60
|
adantr |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) < ( ( deg1 ` ( E |`s F ) ) ` ( M ` A ) ) ) |
62 |
32
|
adantr |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( E |`s F ) e. Ring ) |
63 |
38
|
adantr |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( M ` A ) e. ( Base ` P ) ) |
64 |
43
|
adantr |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( M ` A ) =/= Z ) |
65 |
49 2 9 34
|
deg1nn0cl |
|- ( ( ( E |`s F ) e. Ring /\ ( M ` A ) e. ( Base ` P ) /\ ( M ` A ) =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` ( M ` A ) ) e. NN0 ) |
66 |
62 63 64 65
|
syl3anc |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` ( M ` A ) ) e. NN0 ) |
67 |
66
|
nn0red |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` ( M ` A ) ) e. RR ) |
68 |
55 2 34 44
|
r1pcl |
|- ( ( ( E |`s F ) e. Ring /\ G e. ( Base ` P ) /\ ( M ` A ) e. ( Unic1p ` ( E |`s F ) ) ) -> ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Base ` P ) ) |
69 |
32 36 46 68
|
syl3anc |
|- ( ph -> ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Base ` P ) ) |
70 |
69
|
adantr |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Base ` P ) ) |
71 |
|
simpr |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) |
72 |
49 2 9 34
|
deg1nn0cl |
|- ( ( ( E |`s F ) e. Ring /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Base ` P ) /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) e. NN0 ) |
73 |
62 70 71 72
|
syl3anc |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) e. NN0 ) |
74 |
73
|
nn0red |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) e. RR ) |
75 |
|
eqid |
|- { q e. dom O | ( ( O ` q ) ` A ) = .0. } = { q e. dom O | ( ( O ` q ) ` A ) = .0. } |
76 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
77 |
|
eqid |
|- ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) |
78 |
1 2 3 4 5 6 7 75 76 77 8
|
minplyval |
|- ( ph -> ( M ` A ) = ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) ) |
79 |
78
|
fveq2d |
|- ( ph -> ( ( deg1 ` ( E |`s F ) ) ` ( M ` A ) ) = ( ( deg1 ` ( E |`s F ) ) ` ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) ) ) |
80 |
79
|
adantr |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` ( M ` A ) ) = ( ( deg1 ` ( E |`s F ) ) ` ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) ) ) |
81 |
5
|
adantr |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> F e. ( SubDRing ` E ) ) |
82 |
81 30
|
syl |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( E |`s F ) e. DivRing ) |
83 |
1 2 3 24 26 6 7 75
|
ply1annidl |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = .0. } e. ( LIdeal ` P ) ) |
84 |
83
|
adantr |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> { q e. dom O | ( ( O ` q ) ` A ) = .0. } e. ( LIdeal ` P ) ) |
85 |
|
fveq2 |
|- ( q = ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) -> ( O ` q ) = ( O ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) ) |
86 |
85
|
fveq1d |
|- ( q = ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) -> ( ( O ` q ) ` A ) = ( ( O ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) ` A ) ) |
87 |
86
|
eqeq1d |
|- ( q = ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) -> ( ( ( O ` q ) ` A ) = .0. <-> ( ( O ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) ` A ) = .0. ) ) |
88 |
1 2 34 24 26
|
evls1dm |
|- ( ph -> dom O = ( Base ` P ) ) |
89 |
69 88
|
eleqtrrd |
|- ( ph -> ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) e. dom O ) |
90 |
55 2 34 48 15 50
|
r1pval |
|- ( ( G e. ( Base ` P ) /\ ( M ` A ) e. ( Base ` P ) ) -> ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) = ( G ( -g ` P ) ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) ) |
91 |
36 38 90
|
syl2anc |
|- ( ph -> ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) = ( G ( -g ` P ) ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) ) |
92 |
91
|
fveq2d |
|- ( ph -> ( O ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) = ( O ` ( G ( -g ` P ) ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) ) ) |
93 |
92
|
fveq1d |
|- ( ph -> ( ( O ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) ` A ) = ( ( O ` ( G ( -g ` P ) ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) ) ` A ) ) |
94 |
|
eqid |
|- ( -g ` E ) = ( -g ` E ) |
95 |
2
|
ply1ring |
|- ( ( E |`s F ) e. Ring -> P e. Ring ) |
96 |
32 95
|
syl |
|- ( ph -> P e. Ring ) |
97 |
34 15 96 54 38
|
ringcld |
|- ( ph -> ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) e. ( Base ` P ) ) |
98 |
1 3 2 23 34 50 94 24 26 36 97 6
|
evls1subd |
|- ( ph -> ( ( O ` ( G ( -g ` P ) ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) ) ` A ) = ( ( ( O ` G ) ` A ) ( -g ` E ) ( ( O ` ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) ` A ) ) ) |
99 |
|
eqid |
|- ( .r ` E ) = ( .r ` E ) |
100 |
1 3 2 23 34 15 99 24 26 54 38 6
|
evls1muld |
|- ( ph -> ( ( O ` ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) ` A ) = ( ( ( O ` ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ) ` A ) ( .r ` E ) ( ( O ` ( M ` A ) ) ` A ) ) ) |
101 |
1 2 3 4 5 6 7 8
|
minplyann |
|- ( ph -> ( ( O ` ( M ` A ) ) ` A ) = .0. ) |
102 |
101
|
oveq2d |
|- ( ph -> ( ( ( O ` ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ) ` A ) ( .r ` E ) ( ( O ` ( M ` A ) ) ` A ) ) = ( ( ( O ` ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ) ` A ) ( .r ` E ) .0. ) ) |
103 |
24
|
crngringd |
|- ( ph -> E e. Ring ) |
104 |
1 2 3 34 24 26 6 54
|
evls1fvcl |
|- ( ph -> ( ( O ` ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ) ` A ) e. B ) |
105 |
3 99 7 103 104
|
ringrzd |
|- ( ph -> ( ( ( O ` ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ) ` A ) ( .r ` E ) .0. ) = .0. ) |
106 |
100 102 105
|
3eqtrd |
|- ( ph -> ( ( O ` ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) ` A ) = .0. ) |
107 |
10 106
|
oveq12d |
|- ( ph -> ( ( ( O ` G ) ` A ) ( -g ` E ) ( ( O ` ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) ` A ) ) = ( .0. ( -g ` E ) .0. ) ) |
108 |
24
|
crnggrpd |
|- ( ph -> E e. Grp ) |
109 |
3 7
|
grpidcl |
|- ( E e. Grp -> .0. e. B ) |
110 |
3 7 94
|
grpsubid1 |
|- ( ( E e. Grp /\ .0. e. B ) -> ( .0. ( -g ` E ) .0. ) = .0. ) |
111 |
108 109 110
|
syl2anc2 |
|- ( ph -> ( .0. ( -g ` E ) .0. ) = .0. ) |
112 |
98 107 111
|
3eqtrd |
|- ( ph -> ( ( O ` ( G ( -g ` P ) ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) ) ` A ) = .0. ) |
113 |
93 112
|
eqtrd |
|- ( ph -> ( ( O ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) ` A ) = .0. ) |
114 |
87 89 113
|
elrabd |
|- ( ph -> ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
115 |
114
|
adantr |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
116 |
2 77 34 82 84 49 9 115 71
|
ig1pmindeg |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) ) <_ ( ( deg1 ` ( E |`s F ) ) ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) ) |
117 |
80 116
|
eqbrtrd |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` ( M ` A ) ) <_ ( ( deg1 ` ( E |`s F ) ) ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) ) |
118 |
67 74 117
|
lensymd |
|- ( ( ph /\ ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) -> -. ( ( deg1 ` ( E |`s F ) ) ` ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) < ( ( deg1 ` ( E |`s F ) ) ` ( M ` A ) ) ) |
119 |
61 118
|
pm2.65da |
|- ( ph -> -. ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z ) |
120 |
|
nne |
|- ( -. ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) =/= Z <-> ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) = Z ) |
121 |
119 120
|
sylib |
|- ( ph -> ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) = Z ) |
122 |
121
|
oveq2d |
|- ( ph -> ( ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ( +g ` P ) ( G ( rem1p ` ( E |`s F ) ) ( M ` A ) ) ) = ( ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ( +g ` P ) Z ) ) |
123 |
96
|
ringgrpd |
|- ( ph -> P e. Grp ) |
124 |
34 56 9 123 97
|
grpridd |
|- ( ph -> ( ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ( +g ` P ) Z ) = ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) |
125 |
58 122 124
|
3eqtrd |
|- ( ph -> G = ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) ) |
126 |
125 11
|
eqeltrrd |
|- ( ph -> ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) e. ( Irred ` P ) ) |
127 |
1 2 3 4 5 6 8 9 43
|
minplyirred |
|- ( ph -> ( M ` A ) e. ( Irred ` P ) ) |
128 |
33 14
|
irrednu |
|- ( ( M ` A ) e. ( Irred ` P ) -> -. ( M ` A ) e. ( Unit ` P ) ) |
129 |
127 128
|
syl |
|- ( ph -> -. ( M ` A ) e. ( Unit ` P ) ) |
130 |
33 34 14 15
|
irredmul |
|- ( ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Base ` P ) /\ ( M ` A ) e. ( Base ` P ) /\ ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) e. ( Irred ` P ) ) -> ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Unit ` P ) \/ ( M ` A ) e. ( Unit ` P ) ) ) |
131 |
130
|
orcomd |
|- ( ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Base ` P ) /\ ( M ` A ) e. ( Base ` P ) /\ ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) e. ( Irred ` P ) ) -> ( ( M ` A ) e. ( Unit ` P ) \/ ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Unit ` P ) ) ) |
132 |
131
|
orcanai |
|- ( ( ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Base ` P ) /\ ( M ` A ) e. ( Base ` P ) /\ ( ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) ( .r ` P ) ( M ` A ) ) e. ( Irred ` P ) ) /\ -. ( M ` A ) e. ( Unit ` P ) ) -> ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Unit ` P ) ) |
133 |
54 38 126 129 132
|
syl31anc |
|- ( ph -> ( G ( quot1p ` ( E |`s F ) ) ( M ` A ) ) e. ( Unit ` P ) ) |
134 |
2 13 14 15 17 12 29 133 125
|
m1pmeq |
|- ( ph -> G = ( M ` A ) ) |