Metamath Proof Explorer


Theorem irredminply

Description: An irreducible, monic, annihilating polynomial isthe minimal polynomial. (Contributed by Thierry Arnoux, 27-Apr-2025)

Ref Expression
Hypotheses irredminply.o O = E evalSub 1 F
irredminply.p P = Poly 1 E 𝑠 F
irredminply.b B = Base E
irredminply.e φ E Field
irredminply.f φ F SubDRing E
irredminply.a φ A B
irredminply.0 0 ˙ = 0 E
irredminply.m M = E minPoly F
irredminply.z Z = 0 P
irredminply.1 φ O G A = 0 ˙
irredminply.2 φ G Irred P
irredminply.3 φ G Monic 1p E 𝑠 F
Assertion irredminply φ G = M A

Proof

Step Hyp Ref Expression
1 irredminply.o O = E evalSub 1 F
2 irredminply.p P = Poly 1 E 𝑠 F
3 irredminply.b B = Base E
4 irredminply.e φ E Field
5 irredminply.f φ F SubDRing E
6 irredminply.a φ A B
7 irredminply.0 0 ˙ = 0 E
8 irredminply.m M = E minPoly F
9 irredminply.z Z = 0 P
10 irredminply.1 φ O G A = 0 ˙
11 irredminply.2 φ G Irred P
12 irredminply.3 φ G Monic 1p E 𝑠 F
13 eqid Monic 1p E 𝑠 F = Monic 1p E 𝑠 F
14 eqid Unit P = Unit P
15 eqid P = P
16 fldsdrgfld E Field F SubDRing E E 𝑠 F Field
17 4 5 16 syl2anc φ E 𝑠 F Field
18 eqid 0 Poly 1 E = 0 Poly 1 E
19 fveq2 g = G O g = O G
20 19 fveq1d g = G O g A = O G A
21 20 eqeq1d g = G O g A = 0 ˙ O G A = 0 ˙
22 21 12 10 rspcedvdw φ g Monic 1p E 𝑠 F O g A = 0 ˙
23 eqid E 𝑠 F = E 𝑠 F
24 4 fldcrngd φ E CRing
25 sdrgsubrg F SubDRing E F SubRing E
26 5 25 syl φ F SubRing E
27 1 23 3 7 24 26 elirng φ A E IntgRing F A B g Monic 1p E 𝑠 F O g A = 0 ˙
28 6 22 27 mpbir2and φ A E IntgRing F
29 18 4 5 8 28 13 minplym1p φ M A Monic 1p E 𝑠 F
30 23 sdrgdrng F SubDRing E E 𝑠 F DivRing
31 5 30 syl φ E 𝑠 F DivRing
32 31 drngringd φ E 𝑠 F Ring
33 eqid Irred P = Irred P
34 eqid Base P = Base P
35 33 34 irredcl G Irred P G Base P
36 11 35 syl φ G Base P
37 2 34 13 mon1pcl M A Monic 1p E 𝑠 F M A Base P
38 29 37 syl φ M A Base P
39 18 4 5 8 28 irngnminplynz φ M A 0 Poly 1 E
40 eqid Poly 1 E = Poly 1 E
41 40 23 2 34 26 18 ressply10g φ 0 Poly 1 E = 0 P
42 9 41 eqtr4id φ Z = 0 Poly 1 E
43 39 42 neeqtrrd φ M A Z
44 eqid Unic 1p E 𝑠 F = Unic 1p E 𝑠 F
45 2 34 9 44 drnguc1p E 𝑠 F DivRing M A Base P M A Z M A Unic 1p E 𝑠 F
46 31 38 43 45 syl3anc φ M A Unic 1p E 𝑠 F
47 eqidd φ G quot 1p E 𝑠 F M A = G quot 1p E 𝑠 F M A
48 eqid quot 1p E 𝑠 F = quot 1p E 𝑠 F
49 eqid deg 1 E 𝑠 F = deg 1 E 𝑠 F
50 eqid - P = - P
51 48 2 34 49 50 15 44 q1peqb E 𝑠 F Ring G Base P M A Unic 1p E 𝑠 F G quot 1p E 𝑠 F M A Base P deg 1 E 𝑠 F G - P G quot 1p E 𝑠 F M A P M A < deg 1 E 𝑠 F M A G quot 1p E 𝑠 F M A = G quot 1p E 𝑠 F M A
52 51 biimpar E 𝑠 F Ring G Base P M A Unic 1p E 𝑠 F G quot 1p E 𝑠 F M A = G quot 1p E 𝑠 F M A G quot 1p E 𝑠 F M A Base P deg 1 E 𝑠 F G - P G quot 1p E 𝑠 F M A P M A < deg 1 E 𝑠 F M A
53 32 36 46 47 52 syl31anc φ G quot 1p E 𝑠 F M A Base P deg 1 E 𝑠 F G - P G quot 1p E 𝑠 F M A P M A < deg 1 E 𝑠 F M A
54 53 simpld φ G quot 1p E 𝑠 F M A Base P
55 eqid rem 1p E 𝑠 F = rem 1p E 𝑠 F
56 eqid + P = + P
57 2 34 44 48 55 15 56 r1pid E 𝑠 F Ring G Base P M A Unic 1p E 𝑠 F G = G quot 1p E 𝑠 F M A P M A + P G rem 1p E 𝑠 F M A
58 32 36 46 57 syl3anc φ G = G quot 1p E 𝑠 F M A P M A + P G rem 1p E 𝑠 F M A
59 55 2 34 44 49 r1pdeglt E 𝑠 F Ring G Base P M A Unic 1p E 𝑠 F deg 1 E 𝑠 F G rem 1p E 𝑠 F M A < deg 1 E 𝑠 F M A
60 32 36 46 59 syl3anc φ deg 1 E 𝑠 F G rem 1p E 𝑠 F M A < deg 1 E 𝑠 F M A
61 60 adantr φ G rem 1p E 𝑠 F M A Z deg 1 E 𝑠 F G rem 1p E 𝑠 F M A < deg 1 E 𝑠 F M A
62 32 adantr φ G rem 1p E 𝑠 F M A Z E 𝑠 F Ring
63 38 adantr φ G rem 1p E 𝑠 F M A Z M A Base P
64 43 adantr φ G rem 1p E 𝑠 F M A Z M A Z
65 49 2 9 34 deg1nn0cl E 𝑠 F Ring M A Base P M A Z deg 1 E 𝑠 F M A 0
66 62 63 64 65 syl3anc φ G rem 1p E 𝑠 F M A Z deg 1 E 𝑠 F M A 0
67 66 nn0red φ G rem 1p E 𝑠 F M A Z deg 1 E 𝑠 F M A
68 55 2 34 44 r1pcl E 𝑠 F Ring G Base P M A Unic 1p E 𝑠 F G rem 1p E 𝑠 F M A Base P
69 32 36 46 68 syl3anc φ G rem 1p E 𝑠 F M A Base P
70 69 adantr φ G rem 1p E 𝑠 F M A Z G rem 1p E 𝑠 F M A Base P
71 simpr φ G rem 1p E 𝑠 F M A Z G rem 1p E 𝑠 F M A Z
72 49 2 9 34 deg1nn0cl E 𝑠 F Ring G rem 1p E 𝑠 F M A Base P G rem 1p E 𝑠 F M A Z deg 1 E 𝑠 F G rem 1p E 𝑠 F M A 0
73 62 70 71 72 syl3anc φ G rem 1p E 𝑠 F M A Z deg 1 E 𝑠 F G rem 1p E 𝑠 F M A 0
74 73 nn0red φ G rem 1p E 𝑠 F M A Z deg 1 E 𝑠 F G rem 1p E 𝑠 F M A
75 eqid q dom O | O q A = 0 ˙ = q dom O | O q A = 0 ˙
76 eqid RSpan P = RSpan P
77 eqid idlGen 1p E 𝑠 F = idlGen 1p E 𝑠 F
78 1 2 3 4 5 6 7 75 76 77 8 minplyval φ M A = idlGen 1p E 𝑠 F q dom O | O q A = 0 ˙
79 78 fveq2d φ deg 1 E 𝑠 F M A = deg 1 E 𝑠 F idlGen 1p E 𝑠 F q dom O | O q A = 0 ˙
80 79 adantr φ G rem 1p E 𝑠 F M A Z deg 1 E 𝑠 F M A = deg 1 E 𝑠 F idlGen 1p E 𝑠 F q dom O | O q A = 0 ˙
81 5 adantr φ G rem 1p E 𝑠 F M A Z F SubDRing E
82 81 30 syl φ G rem 1p E 𝑠 F M A Z E 𝑠 F DivRing
83 1 2 3 24 26 6 7 75 ply1annidl φ q dom O | O q A = 0 ˙ LIdeal P
84 83 adantr φ G rem 1p E 𝑠 F M A Z q dom O | O q A = 0 ˙ LIdeal P
85 fveq2 q = G rem 1p E 𝑠 F M A O q = O G rem 1p E 𝑠 F M A
86 85 fveq1d q = G rem 1p E 𝑠 F M A O q A = O G rem 1p E 𝑠 F M A A
87 86 eqeq1d q = G rem 1p E 𝑠 F M A O q A = 0 ˙ O G rem 1p E 𝑠 F M A A = 0 ˙
88 1 2 34 24 26 evls1dm φ dom O = Base P
89 69 88 eleqtrrd φ G rem 1p E 𝑠 F M A dom O
90 55 2 34 48 15 50 r1pval G Base P M A Base P G rem 1p E 𝑠 F M A = G - P G quot 1p E 𝑠 F M A P M A
91 36 38 90 syl2anc φ G rem 1p E 𝑠 F M A = G - P G quot 1p E 𝑠 F M A P M A
92 91 fveq2d φ O G rem 1p E 𝑠 F M A = O G - P G quot 1p E 𝑠 F M A P M A
93 92 fveq1d φ O G rem 1p E 𝑠 F M A A = O G - P G quot 1p E 𝑠 F M A P M A A
94 eqid - E = - E
95 2 ply1ring E 𝑠 F Ring P Ring
96 32 95 syl φ P Ring
97 34 15 96 54 38 ringcld φ G quot 1p E 𝑠 F M A P M A Base P
98 1 3 2 23 34 50 94 24 26 36 97 6 evls1subd φ O G - P G quot 1p E 𝑠 F M A P M A A = O G A - E O G quot 1p E 𝑠 F M A P M A A
99 eqid E = E
100 1 3 2 23 34 15 99 24 26 54 38 6 evls1muld φ O G quot 1p E 𝑠 F M A P M A A = O G quot 1p E 𝑠 F M A A E O M A A
101 1 2 3 4 5 6 7 8 minplyann φ O M A A = 0 ˙
102 101 oveq2d φ O G quot 1p E 𝑠 F M A A E O M A A = O G quot 1p E 𝑠 F M A A E 0 ˙
103 24 crngringd φ E Ring
104 1 2 3 34 24 26 6 54 evls1fvcl φ O G quot 1p E 𝑠 F M A A B
105 3 99 7 103 104 ringrzd φ O G quot 1p E 𝑠 F M A A E 0 ˙ = 0 ˙
106 100 102 105 3eqtrd φ O G quot 1p E 𝑠 F M A P M A A = 0 ˙
107 10 106 oveq12d φ O G A - E O G quot 1p E 𝑠 F M A P M A A = 0 ˙ - E 0 ˙
108 24 crnggrpd φ E Grp
109 3 7 grpidcl E Grp 0 ˙ B
110 3 7 94 grpsubid1 E Grp 0 ˙ B 0 ˙ - E 0 ˙ = 0 ˙
111 108 109 110 syl2anc2 φ 0 ˙ - E 0 ˙ = 0 ˙
112 98 107 111 3eqtrd φ O G - P G quot 1p E 𝑠 F M A P M A A = 0 ˙
113 93 112 eqtrd φ O G rem 1p E 𝑠 F M A A = 0 ˙
114 87 89 113 elrabd φ G rem 1p E 𝑠 F M A q dom O | O q A = 0 ˙
115 114 adantr φ G rem 1p E 𝑠 F M A Z G rem 1p E 𝑠 F M A q dom O | O q A = 0 ˙
116 2 77 34 82 84 49 9 115 71 ig1pmindeg φ G rem 1p E 𝑠 F M A Z deg 1 E 𝑠 F idlGen 1p E 𝑠 F q dom O | O q A = 0 ˙ deg 1 E 𝑠 F G rem 1p E 𝑠 F M A
117 80 116 eqbrtrd φ G rem 1p E 𝑠 F M A Z deg 1 E 𝑠 F M A deg 1 E 𝑠 F G rem 1p E 𝑠 F M A
118 67 74 117 lensymd φ G rem 1p E 𝑠 F M A Z ¬ deg 1 E 𝑠 F G rem 1p E 𝑠 F M A < deg 1 E 𝑠 F M A
119 61 118 pm2.65da φ ¬ G rem 1p E 𝑠 F M A Z
120 nne ¬ G rem 1p E 𝑠 F M A Z G rem 1p E 𝑠 F M A = Z
121 119 120 sylib φ G rem 1p E 𝑠 F M A = Z
122 121 oveq2d φ G quot 1p E 𝑠 F M A P M A + P G rem 1p E 𝑠 F M A = G quot 1p E 𝑠 F M A P M A + P Z
123 96 ringgrpd φ P Grp
124 34 56 9 123 97 grpridd φ G quot 1p E 𝑠 F M A P M A + P Z = G quot 1p E 𝑠 F M A P M A
125 58 122 124 3eqtrd φ G = G quot 1p E 𝑠 F M A P M A
126 125 11 eqeltrrd φ G quot 1p E 𝑠 F M A P M A Irred P
127 1 2 3 4 5 6 8 9 43 minplyirred φ M A Irred P
128 33 14 irrednu M A Irred P ¬ M A Unit P
129 127 128 syl φ ¬ M A Unit P
130 33 34 14 15 irredmul G quot 1p E 𝑠 F M A Base P M A Base P G quot 1p E 𝑠 F M A P M A Irred P G quot 1p E 𝑠 F M A Unit P M A Unit P
131 130 orcomd G quot 1p E 𝑠 F M A Base P M A Base P G quot 1p E 𝑠 F M A P M A Irred P M A Unit P G quot 1p E 𝑠 F M A Unit P
132 131 orcanai G quot 1p E 𝑠 F M A Base P M A Base P G quot 1p E 𝑠 F M A P M A Irred P ¬ M A Unit P G quot 1p E 𝑠 F M A Unit P
133 54 38 126 129 132 syl31anc φ G quot 1p E 𝑠 F M A Unit P
134 2 13 14 15 17 12 29 133 125 m1pmeq φ G = M A