Step |
Hyp |
Ref |
Expression |
1 |
|
irredminply.o |
|
2 |
|
irredminply.p |
|
3 |
|
irredminply.b |
|
4 |
|
irredminply.e |
|
5 |
|
irredminply.f |
|
6 |
|
irredminply.a |
|
7 |
|
irredminply.0 |
|
8 |
|
irredminply.m |
|
9 |
|
irredminply.z |
|
10 |
|
irredminply.1 |
|
11 |
|
irredminply.2 |
|
12 |
|
irredminply.3 |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
fldsdrgfld |
|
17 |
4 5 16
|
syl2anc |
|
18 |
|
eqid |
|
19 |
|
fveq2 |
|
20 |
19
|
fveq1d |
|
21 |
20
|
eqeq1d |
|
22 |
21 12 10
|
rspcedvdw |
|
23 |
|
eqid |
|
24 |
4
|
fldcrngd |
|
25 |
|
sdrgsubrg |
|
26 |
5 25
|
syl |
|
27 |
1 23 3 7 24 26
|
elirng |
|
28 |
6 22 27
|
mpbir2and |
|
29 |
18 4 5 8 28 13
|
minplym1p |
|
30 |
23
|
sdrgdrng |
|
31 |
5 30
|
syl |
|
32 |
31
|
drngringd |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
33 34
|
irredcl |
|
36 |
11 35
|
syl |
|
37 |
2 34 13
|
mon1pcl |
|
38 |
29 37
|
syl |
|
39 |
18 4 5 8 28
|
irngnminplynz |
|
40 |
|
eqid |
|
41 |
40 23 2 34 26 18
|
ressply10g |
|
42 |
9 41
|
eqtr4id |
|
43 |
39 42
|
neeqtrrd |
|
44 |
|
eqid |
|
45 |
2 34 9 44
|
drnguc1p |
|
46 |
31 38 43 45
|
syl3anc |
|
47 |
|
eqidd |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
|
eqid |
|
51 |
48 2 34 49 50 15 44
|
q1peqb |
|
52 |
51
|
biimpar |
|
53 |
32 36 46 47 52
|
syl31anc |
|
54 |
53
|
simpld |
|
55 |
|
eqid |
|
56 |
|
eqid |
|
57 |
2 34 44 48 55 15 56
|
r1pid |
|
58 |
32 36 46 57
|
syl3anc |
|
59 |
55 2 34 44 49
|
r1pdeglt |
|
60 |
32 36 46 59
|
syl3anc |
|
61 |
60
|
adantr |
|
62 |
32
|
adantr |
|
63 |
38
|
adantr |
|
64 |
43
|
adantr |
|
65 |
49 2 9 34
|
deg1nn0cl |
|
66 |
62 63 64 65
|
syl3anc |
|
67 |
66
|
nn0red |
|
68 |
55 2 34 44
|
r1pcl |
|
69 |
32 36 46 68
|
syl3anc |
|
70 |
69
|
adantr |
|
71 |
|
simpr |
|
72 |
49 2 9 34
|
deg1nn0cl |
|
73 |
62 70 71 72
|
syl3anc |
|
74 |
73
|
nn0red |
|
75 |
|
eqid |
|
76 |
|
eqid |
|
77 |
|
eqid |
|
78 |
1 2 3 4 5 6 7 75 76 77 8
|
minplyval |
|
79 |
78
|
fveq2d |
|
80 |
79
|
adantr |
|
81 |
5
|
adantr |
|
82 |
81 30
|
syl |
|
83 |
1 2 3 24 26 6 7 75
|
ply1annidl |
|
84 |
83
|
adantr |
|
85 |
|
fveq2 |
|
86 |
85
|
fveq1d |
|
87 |
86
|
eqeq1d |
|
88 |
1 2 34 24 26
|
evls1dm |
|
89 |
69 88
|
eleqtrrd |
|
90 |
55 2 34 48 15 50
|
r1pval |
|
91 |
36 38 90
|
syl2anc |
|
92 |
91
|
fveq2d |
|
93 |
92
|
fveq1d |
|
94 |
|
eqid |
|
95 |
2
|
ply1ring |
|
96 |
32 95
|
syl |
|
97 |
34 15 96 54 38
|
ringcld |
|
98 |
1 3 2 23 34 50 94 24 26 36 97 6
|
evls1subd |
|
99 |
|
eqid |
|
100 |
1 3 2 23 34 15 99 24 26 54 38 6
|
evls1muld |
|
101 |
1 2 3 4 5 6 7 8
|
minplyann |
|
102 |
101
|
oveq2d |
|
103 |
24
|
crngringd |
|
104 |
1 2 3 34 24 26 6 54
|
evls1fvcl |
|
105 |
3 99 7 103 104
|
ringrzd |
|
106 |
100 102 105
|
3eqtrd |
|
107 |
10 106
|
oveq12d |
|
108 |
24
|
crnggrpd |
|
109 |
3 7
|
grpidcl |
|
110 |
3 7 94
|
grpsubid1 |
|
111 |
108 109 110
|
syl2anc2 |
|
112 |
98 107 111
|
3eqtrd |
|
113 |
93 112
|
eqtrd |
|
114 |
87 89 113
|
elrabd |
|
115 |
114
|
adantr |
|
116 |
2 77 34 82 84 49 9 115 71
|
ig1pmindeg |
|
117 |
80 116
|
eqbrtrd |
|
118 |
67 74 117
|
lensymd |
|
119 |
61 118
|
pm2.65da |
|
120 |
|
nne |
|
121 |
119 120
|
sylib |
|
122 |
121
|
oveq2d |
|
123 |
96
|
ringgrpd |
|
124 |
34 56 9 123 97
|
grpridd |
|
125 |
58 122 124
|
3eqtrd |
|
126 |
125 11
|
eqeltrrd |
|
127 |
1 2 3 4 5 6 8 9 43
|
minplyirred |
|
128 |
33 14
|
irrednu |
|
129 |
127 128
|
syl |
|
130 |
33 34 14 15
|
irredmul |
|
131 |
130
|
orcomd |
|
132 |
131
|
orcanai |
|
133 |
54 38 126 129 132
|
syl31anc |
|
134 |
2 13 14 15 17 12 29 133 125
|
m1pmeq |
|