| Step |
Hyp |
Ref |
Expression |
| 1 |
|
minplyelirng.b |
|- B = ( Base ` R ) |
| 2 |
|
minplyelirng.m |
|- M = ( R minPoly S ) |
| 3 |
|
minplyelirng.d |
|- D = ( deg1 ` ( R |`s S ) ) |
| 4 |
|
minplyelirng.r |
|- ( ph -> R e. Field ) |
| 5 |
|
minplyelirng.s |
|- ( ph -> S e. ( SubDRing ` R ) ) |
| 6 |
|
minplyelirng.a |
|- ( ph -> A e. B ) |
| 7 |
|
minplyelirng.1 |
|- ( ph -> ( D ` ( M ` A ) ) e. NN0 ) |
| 8 |
|
fveq2 |
|- ( m = ( M ` A ) -> ( ( R evalSub1 S ) ` m ) = ( ( R evalSub1 S ) ` ( M ` A ) ) ) |
| 9 |
8
|
fveq1d |
|- ( m = ( M ` A ) -> ( ( ( R evalSub1 S ) ` m ) ` A ) = ( ( ( R evalSub1 S ) ` ( M ` A ) ) ` A ) ) |
| 10 |
9
|
eqeq1d |
|- ( m = ( M ` A ) -> ( ( ( ( R evalSub1 S ) ` m ) ` A ) = ( 0g ` R ) <-> ( ( ( R evalSub1 S ) ` ( M ` A ) ) ` A ) = ( 0g ` R ) ) ) |
| 11 |
|
eqid |
|- ( 0g ` ( Poly1 ` R ) ) = ( 0g ` ( Poly1 ` R ) ) |
| 12 |
|
sdrgsubrg |
|- ( S e. ( SubDRing ` R ) -> S e. ( SubRing ` R ) ) |
| 13 |
5 12
|
syl |
|- ( ph -> S e. ( SubRing ` R ) ) |
| 14 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
| 15 |
14
|
subrgring |
|- ( S e. ( SubRing ` R ) -> ( R |`s S ) e. Ring ) |
| 16 |
13 15
|
syl |
|- ( ph -> ( R |`s S ) e. Ring ) |
| 17 |
|
eqid |
|- ( R evalSub1 S ) = ( R evalSub1 S ) |
| 18 |
|
eqid |
|- ( Poly1 ` ( R |`s S ) ) = ( Poly1 ` ( R |`s S ) ) |
| 19 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 20 |
|
eqid |
|- { q e. dom ( R evalSub1 S ) | ( ( ( R evalSub1 S ) ` q ) ` A ) = ( 0g ` R ) } = { q e. dom ( R evalSub1 S ) | ( ( ( R evalSub1 S ) ` q ) ` A ) = ( 0g ` R ) } |
| 21 |
|
eqid |
|- ( RSpan ` ( Poly1 ` ( R |`s S ) ) ) = ( RSpan ` ( Poly1 ` ( R |`s S ) ) ) |
| 22 |
|
eqid |
|- ( idlGen1p ` ( R |`s S ) ) = ( idlGen1p ` ( R |`s S ) ) |
| 23 |
17 18 1 4 5 6 19 20 21 22 2
|
minplycl |
|- ( ph -> ( M ` A ) e. ( Base ` ( Poly1 ` ( R |`s S ) ) ) ) |
| 24 |
|
eqid |
|- ( 0g ` ( Poly1 ` ( R |`s S ) ) ) = ( 0g ` ( Poly1 ` ( R |`s S ) ) ) |
| 25 |
|
eqid |
|- ( Base ` ( Poly1 ` ( R |`s S ) ) ) = ( Base ` ( Poly1 ` ( R |`s S ) ) ) |
| 26 |
3 18 24 25
|
deg1nn0clb |
|- ( ( ( R |`s S ) e. Ring /\ ( M ` A ) e. ( Base ` ( Poly1 ` ( R |`s S ) ) ) ) -> ( ( M ` A ) =/= ( 0g ` ( Poly1 ` ( R |`s S ) ) ) <-> ( D ` ( M ` A ) ) e. NN0 ) ) |
| 27 |
26
|
biimpar |
|- ( ( ( ( R |`s S ) e. Ring /\ ( M ` A ) e. ( Base ` ( Poly1 ` ( R |`s S ) ) ) ) /\ ( D ` ( M ` A ) ) e. NN0 ) -> ( M ` A ) =/= ( 0g ` ( Poly1 ` ( R |`s S ) ) ) ) |
| 28 |
16 23 7 27
|
syl21anc |
|- ( ph -> ( M ` A ) =/= ( 0g ` ( Poly1 ` ( R |`s S ) ) ) ) |
| 29 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
| 30 |
29 14 18 25 13 11
|
ressply10g |
|- ( ph -> ( 0g ` ( Poly1 ` R ) ) = ( 0g ` ( Poly1 ` ( R |`s S ) ) ) ) |
| 31 |
28 30
|
neeqtrrd |
|- ( ph -> ( M ` A ) =/= ( 0g ` ( Poly1 ` R ) ) ) |
| 32 |
|
eqid |
|- ( Monic1p ` ( R |`s S ) ) = ( Monic1p ` ( R |`s S ) ) |
| 33 |
1 11 4 5 2 6 31 32
|
minplynzm1p |
|- ( ph -> ( M ` A ) e. ( Monic1p ` ( R |`s S ) ) ) |
| 34 |
17 18 1 4 5 6 19 2
|
minplyann |
|- ( ph -> ( ( ( R evalSub1 S ) ` ( M ` A ) ) ` A ) = ( 0g ` R ) ) |
| 35 |
10 33 34
|
rspcedvdw |
|- ( ph -> E. m e. ( Monic1p ` ( R |`s S ) ) ( ( ( R evalSub1 S ) ` m ) ` A ) = ( 0g ` R ) ) |
| 36 |
4
|
fldcrngd |
|- ( ph -> R e. CRing ) |
| 37 |
17 14 1 19 36 13
|
elirng |
|- ( ph -> ( A e. ( R IntgRing S ) <-> ( A e. B /\ E. m e. ( Monic1p ` ( R |`s S ) ) ( ( ( R evalSub1 S ) ` m ) ` A ) = ( 0g ` R ) ) ) ) |
| 38 |
6 35 37
|
mpbir2and |
|- ( ph -> A e. ( R IntgRing S ) ) |