Metamath Proof Explorer


Theorem ply1annprmidl

Description: The set Q of polynomials annihilating an element A is a prime ideal. (Contributed by Thierry Arnoux, 9-Feb-2025)

Ref Expression
Hypotheses ply1annig1p.o 𝑂 = ( 𝐸 evalSub1 𝐹 )
ply1annig1p.p 𝑃 = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
ply1annig1p.b 𝐵 = ( Base ‘ 𝐸 )
ply1annig1p.e ( 𝜑𝐸 ∈ Field )
ply1annig1p.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
ply1annig1p.a ( 𝜑𝐴𝐵 )
ply1annig1p.0 0 = ( 0g𝐸 )
ply1annig1p.q 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 }
Assertion ply1annprmidl ( 𝜑𝑄 ∈ ( PrmIdeal ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 ply1annig1p.o 𝑂 = ( 𝐸 evalSub1 𝐹 )
2 ply1annig1p.p 𝑃 = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
3 ply1annig1p.b 𝐵 = ( Base ‘ 𝐸 )
4 ply1annig1p.e ( 𝜑𝐸 ∈ Field )
5 ply1annig1p.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
6 ply1annig1p.a ( 𝜑𝐴𝐵 )
7 ply1annig1p.0 0 = ( 0g𝐸 )
8 ply1annig1p.q 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 }
9 4 fldcrngd ( 𝜑𝐸 ∈ CRing )
10 issdrg ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸s 𝐹 ) ∈ DivRing ) )
11 5 10 sylib ( 𝜑 → ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸s 𝐹 ) ∈ DivRing ) )
12 11 simp2d ( 𝜑𝐹 ∈ ( SubRing ‘ 𝐸 ) )
13 eqid ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) ) = ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) )
14 1 2 3 9 12 6 7 8 13 ply1annidllem ( 𝜑𝑄 = ( ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) ) “ { 0 } ) )
15 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
16 1 2 3 15 9 12 6 13 evls1maprhm ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) ) ∈ ( 𝑃 RingHom 𝐸 ) )
17 fldidom ( 𝐸 ∈ Field → 𝐸 ∈ IDomn )
18 7 prmidl0 ( ( 𝐸 ∈ CRing ∧ { 0 } ∈ ( PrmIdeal ‘ 𝐸 ) ) ↔ 𝐸 ∈ IDomn )
19 18 biimpri ( 𝐸 ∈ IDomn → ( 𝐸 ∈ CRing ∧ { 0 } ∈ ( PrmIdeal ‘ 𝐸 ) ) )
20 4 17 19 3syl ( 𝜑 → ( 𝐸 ∈ CRing ∧ { 0 } ∈ ( PrmIdeal ‘ 𝐸 ) ) )
21 20 simprd ( 𝜑 → { 0 } ∈ ( PrmIdeal ‘ 𝐸 ) )
22 eqid ( PrmIdeal ‘ 𝑃 ) = ( PrmIdeal ‘ 𝑃 )
23 22 rhmpreimaprmidl ( ( ( 𝐸 ∈ CRing ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) ) ∈ ( 𝑃 RingHom 𝐸 ) ) ∧ { 0 } ∈ ( PrmIdeal ‘ 𝐸 ) ) → ( ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) ) “ { 0 } ) ∈ ( PrmIdeal ‘ 𝑃 ) )
24 9 16 21 23 syl21anc ( 𝜑 → ( ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) ) “ { 0 } ) ∈ ( PrmIdeal ‘ 𝑃 ) )
25 14 24 eqeltrd ( 𝜑𝑄 ∈ ( PrmIdeal ‘ 𝑃 ) )