| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1zfv.1 |
|- P = ( Poly1 ` R ) |
| 2 |
|
coe1zfv.2 |
|- Z = ( 0g ` P ) |
| 3 |
|
coe1zfv.3 |
|- .0. = ( 0g ` R ) |
| 4 |
|
coe1zfv.4 |
|- ( ph -> R e. Ring ) |
| 5 |
|
coe1zfv.5 |
|- ( ph -> N e. NN0 ) |
| 6 |
1 2 3
|
coe1z |
|- ( R e. Ring -> ( coe1 ` Z ) = ( NN0 X. { .0. } ) ) |
| 7 |
4 6
|
syl |
|- ( ph -> ( coe1 ` Z ) = ( NN0 X. { .0. } ) ) |
| 8 |
7
|
fveq1d |
|- ( ph -> ( ( coe1 ` Z ) ` N ) = ( ( NN0 X. { .0. } ) ` N ) ) |
| 9 |
3
|
fvexi |
|- .0. e. _V |
| 10 |
9
|
fvconst2 |
|- ( N e. NN0 -> ( ( NN0 X. { .0. } ) ` N ) = .0. ) |
| 11 |
5 10
|
syl |
|- ( ph -> ( ( NN0 X. { .0. } ) ` N ) = .0. ) |
| 12 |
8 11
|
eqtrd |
|- ( ph -> ( ( coe1 ` Z ) ` N ) = .0. ) |