Metamath Proof Explorer


Theorem coe1zfv

Description: The coefficients of the zero univariate polynomial. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses coe1zfv.1
|- P = ( Poly1 ` R )
coe1zfv.2
|- Z = ( 0g ` P )
coe1zfv.3
|- .0. = ( 0g ` R )
coe1zfv.4
|- ( ph -> R e. Ring )
coe1zfv.5
|- ( ph -> N e. NN0 )
Assertion coe1zfv
|- ( ph -> ( ( coe1 ` Z ) ` N ) = .0. )

Proof

Step Hyp Ref Expression
1 coe1zfv.1
 |-  P = ( Poly1 ` R )
2 coe1zfv.2
 |-  Z = ( 0g ` P )
3 coe1zfv.3
 |-  .0. = ( 0g ` R )
4 coe1zfv.4
 |-  ( ph -> R e. Ring )
5 coe1zfv.5
 |-  ( ph -> N e. NN0 )
6 1 2 3 coe1z
 |-  ( R e. Ring -> ( coe1 ` Z ) = ( NN0 X. { .0. } ) )
7 4 6 syl
 |-  ( ph -> ( coe1 ` Z ) = ( NN0 X. { .0. } ) )
8 7 fveq1d
 |-  ( ph -> ( ( coe1 ` Z ) ` N ) = ( ( NN0 X. { .0. } ) ` N ) )
9 3 fvexi
 |-  .0. e. _V
10 9 fvconst2
 |-  ( N e. NN0 -> ( ( NN0 X. { .0. } ) ` N ) = .0. )
11 5 10 syl
 |-  ( ph -> ( ( NN0 X. { .0. } ) ` N ) = .0. )
12 8 11 eqtrd
 |-  ( ph -> ( ( coe1 ` Z ) ` N ) = .0. )