| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1zfv.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
coe1zfv.2 |
⊢ 𝑍 = ( 0g ‘ 𝑃 ) |
| 3 |
|
coe1zfv.3 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
coe1zfv.4 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
coe1zfv.5 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 6 |
1 2 3
|
coe1z |
⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ 𝑍 ) = ( ℕ0 × { 0 } ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → ( coe1 ‘ 𝑍 ) = ( ℕ0 × { 0 } ) ) |
| 8 |
7
|
fveq1d |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝑍 ) ‘ 𝑁 ) = ( ( ℕ0 × { 0 } ) ‘ 𝑁 ) ) |
| 9 |
3
|
fvexi |
⊢ 0 ∈ V |
| 10 |
9
|
fvconst2 |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ℕ0 × { 0 } ) ‘ 𝑁 ) = 0 ) |
| 11 |
5 10
|
syl |
⊢ ( 𝜑 → ( ( ℕ0 × { 0 } ) ‘ 𝑁 ) = 0 ) |
| 12 |
8 11
|
eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝑍 ) ‘ 𝑁 ) = 0 ) |