Metamath Proof Explorer


Theorem coe1vr1

Description: Polynomial coefficient of the variable. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses coe1vr1.1 𝑃 = ( Poly1𝑅 )
coe1vr1.2 𝑋 = ( var1𝑅 )
coe1vr1.3 ( 𝜑𝑅 ∈ Ring )
coe1vr1.4 0 = ( 0g𝑅 )
coe1vr1.5 1 = ( 1r𝑅 )
Assertion coe1vr1 ( 𝜑 → ( coe1𝑋 ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 1 , 1 , 0 ) ) )

Proof

Step Hyp Ref Expression
1 coe1vr1.1 𝑃 = ( Poly1𝑅 )
2 coe1vr1.2 𝑋 = ( var1𝑅 )
3 coe1vr1.3 ( 𝜑𝑅 ∈ Ring )
4 coe1vr1.4 0 = ( 0g𝑅 )
5 coe1vr1.5 1 = ( 1r𝑅 )
6 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
7 2 1 6 vr1cl ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) )
8 eqid ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 )
9 8 6 mgpbas ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) )
10 eqid ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
11 9 10 mulg1 ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 )
12 3 7 11 3syl ( 𝜑 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 )
13 12 fveq2d ( 𝜑 → ( coe1 ‘ ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( coe1𝑋 ) )
14 1nn0 1 ∈ ℕ0
15 14 a1i ( 𝜑 → 1 ∈ ℕ0 )
16 1 2 10 3 15 4 5 coe1mon ( 𝜑 → ( coe1 ‘ ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 1 , 1 , 0 ) ) )
17 13 16 eqtr3d ( 𝜑 → ( coe1𝑋 ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 1 , 1 , 0 ) ) )