Step |
Hyp |
Ref |
Expression |
1 |
|
coe1vr1.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
coe1vr1.2 |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
3 |
|
coe1vr1.3 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
coe1vr1.4 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
coe1vr1.5 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
7 |
2 1 6
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
8 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
9 |
8 6
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
10 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
11 |
9 10
|
mulg1 |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 ) |
12 |
3 7 11
|
3syl |
⊢ ( 𝜑 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 ) |
13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( coe1 ‘ ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( coe1 ‘ 𝑋 ) ) |
14 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
15 |
14
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
16 |
1 2 10 3 15 4 5
|
coe1mon |
⊢ ( 𝜑 → ( coe1 ‘ ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 1 , 1 , 0 ) ) ) |
17 |
13 16
|
eqtr3d |
⊢ ( 𝜑 → ( coe1 ‘ 𝑋 ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 1 , 1 , 0 ) ) ) |