Metamath Proof Explorer


Theorem deg1vr

Description: The degree of the variable polynomial is 1. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses deg1vr.1 𝐷 = ( deg1𝑅 )
deg1vr.2 𝑃 = ( Poly1𝑅 )
deg1vr.3 𝑋 = ( var1𝑅 )
deg1vr.4 ( 𝜑𝑅 ∈ NzRing )
Assertion deg1vr ( 𝜑 → ( 𝐷𝑋 ) = 1 )

Proof

Step Hyp Ref Expression
1 deg1vr.1 𝐷 = ( deg1𝑅 )
2 deg1vr.2 𝑃 = ( Poly1𝑅 )
3 deg1vr.3 𝑋 = ( var1𝑅 )
4 deg1vr.4 ( 𝜑𝑅 ∈ NzRing )
5 nzrring ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring )
6 4 5 syl ( 𝜑𝑅 ∈ Ring )
7 2 ply1sca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) )
8 6 7 syl ( 𝜑𝑅 = ( Scalar ‘ 𝑃 ) )
9 8 fveq2d ( 𝜑 → ( 1r𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) )
10 9 oveq1d ( 𝜑 → ( ( 1r𝑅 ) ( ·𝑠𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) )
11 2 ply1lmod ( 𝑅 ∈ Ring → 𝑃 ∈ LMod )
12 6 11 syl ( 𝜑𝑃 ∈ LMod )
13 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
14 3 2 13 vr1cl ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) )
15 6 14 syl ( 𝜑𝑋 ∈ ( Base ‘ 𝑃 ) )
16 eqid ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 )
17 16 13 mgpbas ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) )
18 eqid ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
19 17 18 mulg1 ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 )
20 15 19 syl ( 𝜑 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 )
21 20 15 eqeltrd ( 𝜑 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
22 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
23 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
24 eqid ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) )
25 13 22 23 24 lmodvs1 ( ( 𝑃 ∈ LMod ∧ ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) )
26 12 21 25 syl2anc ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) )
27 10 26 20 3eqtrd ( 𝜑 → ( ( 1r𝑅 ) ( ·𝑠𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = 𝑋 )
28 27 fveq2d ( 𝜑 → ( 𝐷 ‘ ( ( 1r𝑅 ) ( ·𝑠𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = ( 𝐷𝑋 ) )
29 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
30 eqid ( 1r𝑅 ) = ( 1r𝑅 )
31 29 30 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
32 6 31 syl ( 𝜑 → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
33 eqid ( 0g𝑅 ) = ( 0g𝑅 )
34 30 33 nzrnz ( 𝑅 ∈ NzRing → ( 1r𝑅 ) ≠ ( 0g𝑅 ) )
35 4 34 syl ( 𝜑 → ( 1r𝑅 ) ≠ ( 0g𝑅 ) )
36 1nn0 1 ∈ ℕ0
37 36 a1i ( 𝜑 → 1 ∈ ℕ0 )
38 1 29 2 3 23 16 18 33 deg1tm ( ( 𝑅 ∈ Ring ∧ ( ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 1r𝑅 ) ≠ ( 0g𝑅 ) ) ∧ 1 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r𝑅 ) ( ·𝑠𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = 1 )
39 6 32 35 37 38 syl121anc ( 𝜑 → ( 𝐷 ‘ ( ( 1r𝑅 ) ( ·𝑠𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = 1 )
40 28 39 eqtr3d ( 𝜑 → ( 𝐷𝑋 ) = 1 )