Step |
Hyp |
Ref |
Expression |
1 |
|
deg1vr.1 |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1vr.2 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1vr.3 |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
4 |
|
deg1vr.4 |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
5 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
2
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) |
11 |
2
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
14 |
3 2 13
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
15 |
6 14
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
16 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
17 |
16 13
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
18 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
19 |
17 18
|
mulg1 |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 ) |
20 |
15 19
|
syl |
⊢ ( 𝜑 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 ) |
21 |
20 15
|
eqeltrd |
⊢ ( 𝜑 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
22 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
23 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
24 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) |
25 |
13 22 23 24
|
lmodvs1 |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) |
26 |
12 21 25
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) |
27 |
10 26 20
|
3eqtrd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = 𝑋 ) |
28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = ( 𝐷 ‘ 𝑋 ) ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
30 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
31 |
29 30
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
32 |
6 31
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
33 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
34 |
30 33
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
35 |
4 34
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
36 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
37 |
36
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
38 |
1 29 2 3 23 16 18 33
|
deg1tm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 1 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = 1 ) |
39 |
6 32 35 37 38
|
syl121anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = 1 ) |
40 |
28 39
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑋 ) = 1 ) |