Metamath Proof Explorer


Theorem vr1nz

Description: A univariate polynomial variable cannot be the zero polynomial. (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypotheses vr1nz.x 𝑋 = ( var1𝑈 )
vr1nz.z 𝑍 = ( 0g𝑃 )
vr1nz.u 𝑈 = ( 𝑆s 𝑅 )
vr1nz.p 𝑃 = ( Poly1𝑈 )
vr1nz.s ( 𝜑𝑆 ∈ CRing )
vr1nz.1 ( 𝜑𝑆 ∈ NzRing )
vr1nz.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
Assertion vr1nz ( 𝜑𝑋𝑍 )

Proof

Step Hyp Ref Expression
1 vr1nz.x 𝑋 = ( var1𝑈 )
2 vr1nz.z 𝑍 = ( 0g𝑃 )
3 vr1nz.u 𝑈 = ( 𝑆s 𝑅 )
4 vr1nz.p 𝑃 = ( Poly1𝑈 )
5 vr1nz.s ( 𝜑𝑆 ∈ CRing )
6 vr1nz.1 ( 𝜑𝑆 ∈ NzRing )
7 vr1nz.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
8 eqid ( 1r𝑆 ) = ( 1r𝑆 )
9 eqid ( 0g𝑆 ) = ( 0g𝑆 )
10 8 9 nzrnz ( 𝑆 ∈ NzRing → ( 1r𝑆 ) ≠ ( 0g𝑆 ) )
11 6 10 syl ( 𝜑 → ( 1r𝑆 ) ≠ ( 0g𝑆 ) )
12 5 crnggrpd ( 𝜑𝑆 ∈ Grp )
13 12 grpmndd ( 𝜑𝑆 ∈ Mnd )
14 subrgsubg ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ∈ ( SubGrp ‘ 𝑆 ) )
15 9 subg0cl ( 𝑅 ∈ ( SubGrp ‘ 𝑆 ) → ( 0g𝑆 ) ∈ 𝑅 )
16 7 14 15 3syl ( 𝜑 → ( 0g𝑆 ) ∈ 𝑅 )
17 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
18 17 subrgss ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ ( Base ‘ 𝑆 ) )
19 7 18 syl ( 𝜑𝑅 ⊆ ( Base ‘ 𝑆 ) )
20 3 17 9 ress0g ( ( 𝑆 ∈ Mnd ∧ ( 0g𝑆 ) ∈ 𝑅𝑅 ⊆ ( Base ‘ 𝑆 ) ) → ( 0g𝑆 ) = ( 0g𝑈 ) )
21 13 16 19 20 syl3anc ( 𝜑 → ( 0g𝑆 ) = ( 0g𝑈 ) )
22 21 fveq2d ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑆 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑈 ) ) )
23 22 fveq2d ( 𝜑 → ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑆 ) ) ) = ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑈 ) ) ) )
24 23 adantr ( ( 𝜑𝑋 = 𝑍 ) → ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑆 ) ) ) = ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑈 ) ) ) )
25 3 subrgring ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring )
26 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
27 eqid ( 0g𝑈 ) = ( 0g𝑈 )
28 4 26 27 2 ply1scl0 ( 𝑈 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑈 ) ) = 𝑍 )
29 7 25 28 3syl ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑈 ) ) = 𝑍 )
30 29 adantr ( ( 𝜑𝑋 = 𝑍 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑈 ) ) = 𝑍 )
31 simpr ( ( 𝜑𝑋 = 𝑍 ) → 𝑋 = 𝑍 )
32 30 31 eqtr4d ( ( 𝜑𝑋 = 𝑍 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑈 ) ) = 𝑋 )
33 32 fveq2d ( ( 𝜑𝑋 = 𝑍 ) → ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑈 ) ) ) = ( ( 𝑆 evalSub1 𝑅 ) ‘ 𝑋 ) )
34 eqid ( 𝑆 evalSub1 𝑅 ) = ( 𝑆 evalSub1 𝑅 )
35 34 1 3 17 5 7 evls1var ( 𝜑 → ( ( 𝑆 evalSub1 𝑅 ) ‘ 𝑋 ) = ( I ↾ ( Base ‘ 𝑆 ) ) )
36 35 adantr ( ( 𝜑𝑋 = 𝑍 ) → ( ( 𝑆 evalSub1 𝑅 ) ‘ 𝑋 ) = ( I ↾ ( Base ‘ 𝑆 ) ) )
37 24 33 36 3eqtrd ( ( 𝜑𝑋 = 𝑍 ) → ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑆 ) ) ) = ( I ↾ ( Base ‘ 𝑆 ) ) )
38 37 fveq1d ( ( 𝜑𝑋 = 𝑍 ) → ( ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑆 ) ) ) ‘ ( 1r𝑆 ) ) = ( ( I ↾ ( Base ‘ 𝑆 ) ) ‘ ( 1r𝑆 ) ) )
39 5 crngringd ( 𝜑𝑆 ∈ Ring )
40 17 8 39 ringidcld ( 𝜑 → ( 1r𝑆 ) ∈ ( Base ‘ 𝑆 ) )
41 34 4 3 17 26 5 7 16 40 evls1scafv ( 𝜑 → ( ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑆 ) ) ) ‘ ( 1r𝑆 ) ) = ( 0g𝑆 ) )
42 41 adantr ( ( 𝜑𝑋 = 𝑍 ) → ( ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g𝑆 ) ) ) ‘ ( 1r𝑆 ) ) = ( 0g𝑆 ) )
43 fvresi ( ( 1r𝑆 ) ∈ ( Base ‘ 𝑆 ) → ( ( I ↾ ( Base ‘ 𝑆 ) ) ‘ ( 1r𝑆 ) ) = ( 1r𝑆 ) )
44 40 43 syl ( 𝜑 → ( ( I ↾ ( Base ‘ 𝑆 ) ) ‘ ( 1r𝑆 ) ) = ( 1r𝑆 ) )
45 44 adantr ( ( 𝜑𝑋 = 𝑍 ) → ( ( I ↾ ( Base ‘ 𝑆 ) ) ‘ ( 1r𝑆 ) ) = ( 1r𝑆 ) )
46 38 42 45 3eqtr3rd ( ( 𝜑𝑋 = 𝑍 ) → ( 1r𝑆 ) = ( 0g𝑆 ) )
47 11 46 mteqand ( 𝜑𝑋𝑍 )