| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vr1nz.x |
⊢ 𝑋 = ( var1 ‘ 𝑈 ) |
| 2 |
|
vr1nz.z |
⊢ 𝑍 = ( 0g ‘ 𝑃 ) |
| 3 |
|
vr1nz.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 4 |
|
vr1nz.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑈 ) |
| 5 |
|
vr1nz.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 6 |
|
vr1nz.1 |
⊢ ( 𝜑 → 𝑆 ∈ NzRing ) |
| 7 |
|
vr1nz.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 8 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 10 |
8 9
|
nzrnz |
⊢ ( 𝑆 ∈ NzRing → ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) ) |
| 11 |
6 10
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) ) |
| 12 |
5
|
crnggrpd |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 13 |
12
|
grpmndd |
⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
| 14 |
|
subrgsubg |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 15 |
9
|
subg0cl |
⊢ ( 𝑅 ∈ ( SubGrp ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) ∈ 𝑅 ) |
| 16 |
7 14 15
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ 𝑅 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 18 |
17
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ ( Base ‘ 𝑆 ) ) |
| 19 |
7 18
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ ( Base ‘ 𝑆 ) ) |
| 20 |
3 17 9
|
ress0g |
⊢ ( ( 𝑆 ∈ Mnd ∧ ( 0g ‘ 𝑆 ) ∈ 𝑅 ∧ 𝑅 ⊆ ( Base ‘ 𝑆 ) ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 21 |
13 16 19 20
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑆 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑈 ) ) ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑆 ) ) ) = ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑈 ) ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑍 ) → ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑆 ) ) ) = ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑈 ) ) ) ) |
| 25 |
3
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 26 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 27 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 28 |
4 26 27 2
|
ply1scl0 |
⊢ ( 𝑈 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑈 ) ) = 𝑍 ) |
| 29 |
7 25 28
|
3syl |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑈 ) ) = 𝑍 ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑍 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑈 ) ) = 𝑍 ) |
| 31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑍 ) → 𝑋 = 𝑍 ) |
| 32 |
30 31
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑍 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑈 ) ) = 𝑋 ) |
| 33 |
32
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑍 ) → ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑈 ) ) ) = ( ( 𝑆 evalSub1 𝑅 ) ‘ 𝑋 ) ) |
| 34 |
|
eqid |
⊢ ( 𝑆 evalSub1 𝑅 ) = ( 𝑆 evalSub1 𝑅 ) |
| 35 |
34 1 3 17 5 7
|
evls1var |
⊢ ( 𝜑 → ( ( 𝑆 evalSub1 𝑅 ) ‘ 𝑋 ) = ( I ↾ ( Base ‘ 𝑆 ) ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑍 ) → ( ( 𝑆 evalSub1 𝑅 ) ‘ 𝑋 ) = ( I ↾ ( Base ‘ 𝑆 ) ) ) |
| 37 |
24 33 36
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑍 ) → ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑆 ) ) ) = ( I ↾ ( Base ‘ 𝑆 ) ) ) |
| 38 |
37
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑍 ) → ( ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑆 ) ) ) ‘ ( 1r ‘ 𝑆 ) ) = ( ( I ↾ ( Base ‘ 𝑆 ) ) ‘ ( 1r ‘ 𝑆 ) ) ) |
| 39 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 40 |
17 8 39
|
ringidcld |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 41 |
34 4 3 17 26 5 7 16 40
|
evls1scafv |
⊢ ( 𝜑 → ( ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑆 ) ) ) ‘ ( 1r ‘ 𝑆 ) ) = ( 0g ‘ 𝑆 ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑍 ) → ( ( ( 𝑆 evalSub1 𝑅 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑆 ) ) ) ‘ ( 1r ‘ 𝑆 ) ) = ( 0g ‘ 𝑆 ) ) |
| 43 |
|
fvresi |
⊢ ( ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) → ( ( I ↾ ( Base ‘ 𝑆 ) ) ‘ ( 1r ‘ 𝑆 ) ) = ( 1r ‘ 𝑆 ) ) |
| 44 |
40 43
|
syl |
⊢ ( 𝜑 → ( ( I ↾ ( Base ‘ 𝑆 ) ) ‘ ( 1r ‘ 𝑆 ) ) = ( 1r ‘ 𝑆 ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑍 ) → ( ( I ↾ ( Base ‘ 𝑆 ) ) ‘ ( 1r ‘ 𝑆 ) ) = ( 1r ‘ 𝑆 ) ) |
| 46 |
38 42 45
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑍 ) → ( 1r ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) ) |
| 47 |
11 46
|
mteqand |
⊢ ( 𝜑 → 𝑋 ≠ 𝑍 ) |