Metamath Proof Explorer


Theorem vr1nz

Description: A univariate polynomial variable cannot be the zero polynomial. (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypotheses vr1nz.x X = var 1 U
vr1nz.z Z = 0 P
vr1nz.u U = S 𝑠 R
vr1nz.p P = Poly 1 U
vr1nz.s φ S CRing
vr1nz.1 φ S NzRing
vr1nz.r φ R SubRing S
Assertion vr1nz φ X Z

Proof

Step Hyp Ref Expression
1 vr1nz.x X = var 1 U
2 vr1nz.z Z = 0 P
3 vr1nz.u U = S 𝑠 R
4 vr1nz.p P = Poly 1 U
5 vr1nz.s φ S CRing
6 vr1nz.1 φ S NzRing
7 vr1nz.r φ R SubRing S
8 eqid 1 S = 1 S
9 eqid 0 S = 0 S
10 8 9 nzrnz S NzRing 1 S 0 S
11 6 10 syl φ 1 S 0 S
12 5 crnggrpd φ S Grp
13 12 grpmndd φ S Mnd
14 subrgsubg R SubRing S R SubGrp S
15 9 subg0cl R SubGrp S 0 S R
16 7 14 15 3syl φ 0 S R
17 eqid Base S = Base S
18 17 subrgss R SubRing S R Base S
19 7 18 syl φ R Base S
20 3 17 9 ress0g S Mnd 0 S R R Base S 0 S = 0 U
21 13 16 19 20 syl3anc φ 0 S = 0 U
22 21 fveq2d φ algSc P 0 S = algSc P 0 U
23 22 fveq2d φ S evalSub 1 R algSc P 0 S = S evalSub 1 R algSc P 0 U
24 23 adantr φ X = Z S evalSub 1 R algSc P 0 S = S evalSub 1 R algSc P 0 U
25 3 subrgring R SubRing S U Ring
26 eqid algSc P = algSc P
27 eqid 0 U = 0 U
28 4 26 27 2 ply1scl0 U Ring algSc P 0 U = Z
29 7 25 28 3syl φ algSc P 0 U = Z
30 29 adantr φ X = Z algSc P 0 U = Z
31 simpr φ X = Z X = Z
32 30 31 eqtr4d φ X = Z algSc P 0 U = X
33 32 fveq2d φ X = Z S evalSub 1 R algSc P 0 U = S evalSub 1 R X
34 eqid S evalSub 1 R = S evalSub 1 R
35 34 1 3 17 5 7 evls1var φ S evalSub 1 R X = I Base S
36 35 adantr φ X = Z S evalSub 1 R X = I Base S
37 24 33 36 3eqtrd φ X = Z S evalSub 1 R algSc P 0 S = I Base S
38 37 fveq1d φ X = Z S evalSub 1 R algSc P 0 S 1 S = I Base S 1 S
39 5 crngringd φ S Ring
40 17 8 39 ringidcld φ 1 S Base S
41 34 4 3 17 26 5 7 16 40 evls1scafv φ S evalSub 1 R algSc P 0 S 1 S = 0 S
42 41 adantr φ X = Z S evalSub 1 R algSc P 0 S 1 S = 0 S
43 fvresi 1 S Base S I Base S 1 S = 1 S
44 40 43 syl φ I Base S 1 S = 1 S
45 44 adantr φ X = Z I Base S 1 S = 1 S
46 38 42 45 3eqtr3rd φ X = Z 1 S = 0 S
47 11 46 mteqand φ X Z