Metamath Proof Explorer


Theorem ringidcld

Description: The unity element of a ring belongs to the base set of the ring, deduction version. (Contributed by SN, 16-Oct-2025)

Ref Expression
Hypotheses ringidcl.b B = Base R
ringidcl.u 1 ˙ = 1 R
ringidcld.r φ R Ring
Assertion ringidcld φ 1 ˙ B

Proof

Step Hyp Ref Expression
1 ringidcl.b B = Base R
2 ringidcl.u 1 ˙ = 1 R
3 ringidcld.r φ R Ring
4 1 2 ringidcl R Ring 1 ˙ B
5 3 4 syl φ 1 ˙ B