Metamath Proof Explorer


Theorem ringidcld

Description: The unity element of a ring belongs to the base set of the ring, deduction version. (Contributed by SN, 16-Oct-2025)

Ref Expression
Hypotheses ringidcl.b 𝐵 = ( Base ‘ 𝑅 )
ringidcl.u 1 = ( 1r𝑅 )
ringidcld.r ( 𝜑𝑅 ∈ Ring )
Assertion ringidcld ( 𝜑1𝐵 )

Proof

Step Hyp Ref Expression
1 ringidcl.b 𝐵 = ( Base ‘ 𝑅 )
2 ringidcl.u 1 = ( 1r𝑅 )
3 ringidcld.r ( 𝜑𝑅 ∈ Ring )
4 1 2 ringidcl ( 𝑅 ∈ Ring → 1𝐵 )
5 3 4 syl ( 𝜑1𝐵 )