Metamath Proof Explorer


Theorem ringidcld

Description: The unity element of a ring belongs to the base set of the ring, deduction version. (Contributed by SN, 16-Oct-2025)

Ref Expression
Hypotheses ringidcl.b
|- B = ( Base ` R )
ringidcl.u
|- .1. = ( 1r ` R )
ringidcld.r
|- ( ph -> R e. Ring )
Assertion ringidcld
|- ( ph -> .1. e. B )

Proof

Step Hyp Ref Expression
1 ringidcl.b
 |-  B = ( Base ` R )
2 ringidcl.u
 |-  .1. = ( 1r ` R )
3 ringidcld.r
 |-  ( ph -> R e. Ring )
4 1 2 ringidcl
 |-  ( R e. Ring -> .1. e. B )
5 3 4 syl
 |-  ( ph -> .1. e. B )