Description: The unity element of a ring belongs to the base set of the ring, deduction version. (Contributed by SN, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringidcl.b | |- B = ( Base ` R ) |
|
| ringidcl.u | |- .1. = ( 1r ` R ) |
||
| ringidcld.r | |- ( ph -> R e. Ring ) |
||
| Assertion | ringidcld | |- ( ph -> .1. e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringidcl.b | |- B = ( Base ` R ) |
|
| 2 | ringidcl.u | |- .1. = ( 1r ` R ) |
|
| 3 | ringidcld.r | |- ( ph -> R e. Ring ) |
|
| 4 | 1 2 | ringidcl | |- ( R e. Ring -> .1. e. B ) |
| 5 | 3 4 | syl | |- ( ph -> .1. e. B ) |