| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vr1nz.x |
|- X = ( var1 ` U ) |
| 2 |
|
vr1nz.z |
|- Z = ( 0g ` P ) |
| 3 |
|
vr1nz.u |
|- U = ( S |`s R ) |
| 4 |
|
vr1nz.p |
|- P = ( Poly1 ` U ) |
| 5 |
|
vr1nz.s |
|- ( ph -> S e. CRing ) |
| 6 |
|
vr1nz.1 |
|- ( ph -> S e. NzRing ) |
| 7 |
|
vr1nz.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
| 8 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 9 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 10 |
8 9
|
nzrnz |
|- ( S e. NzRing -> ( 1r ` S ) =/= ( 0g ` S ) ) |
| 11 |
6 10
|
syl |
|- ( ph -> ( 1r ` S ) =/= ( 0g ` S ) ) |
| 12 |
5
|
crnggrpd |
|- ( ph -> S e. Grp ) |
| 13 |
12
|
grpmndd |
|- ( ph -> S e. Mnd ) |
| 14 |
|
subrgsubg |
|- ( R e. ( SubRing ` S ) -> R e. ( SubGrp ` S ) ) |
| 15 |
9
|
subg0cl |
|- ( R e. ( SubGrp ` S ) -> ( 0g ` S ) e. R ) |
| 16 |
7 14 15
|
3syl |
|- ( ph -> ( 0g ` S ) e. R ) |
| 17 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 18 |
17
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ ( Base ` S ) ) |
| 19 |
7 18
|
syl |
|- ( ph -> R C_ ( Base ` S ) ) |
| 20 |
3 17 9
|
ress0g |
|- ( ( S e. Mnd /\ ( 0g ` S ) e. R /\ R C_ ( Base ` S ) ) -> ( 0g ` S ) = ( 0g ` U ) ) |
| 21 |
13 16 19 20
|
syl3anc |
|- ( ph -> ( 0g ` S ) = ( 0g ` U ) ) |
| 22 |
21
|
fveq2d |
|- ( ph -> ( ( algSc ` P ) ` ( 0g ` S ) ) = ( ( algSc ` P ) ` ( 0g ` U ) ) ) |
| 23 |
22
|
fveq2d |
|- ( ph -> ( ( S evalSub1 R ) ` ( ( algSc ` P ) ` ( 0g ` S ) ) ) = ( ( S evalSub1 R ) ` ( ( algSc ` P ) ` ( 0g ` U ) ) ) ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ X = Z ) -> ( ( S evalSub1 R ) ` ( ( algSc ` P ) ` ( 0g ` S ) ) ) = ( ( S evalSub1 R ) ` ( ( algSc ` P ) ` ( 0g ` U ) ) ) ) |
| 25 |
3
|
subrgring |
|- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 26 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
| 27 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 28 |
4 26 27 2
|
ply1scl0 |
|- ( U e. Ring -> ( ( algSc ` P ) ` ( 0g ` U ) ) = Z ) |
| 29 |
7 25 28
|
3syl |
|- ( ph -> ( ( algSc ` P ) ` ( 0g ` U ) ) = Z ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ X = Z ) -> ( ( algSc ` P ) ` ( 0g ` U ) ) = Z ) |
| 31 |
|
simpr |
|- ( ( ph /\ X = Z ) -> X = Z ) |
| 32 |
30 31
|
eqtr4d |
|- ( ( ph /\ X = Z ) -> ( ( algSc ` P ) ` ( 0g ` U ) ) = X ) |
| 33 |
32
|
fveq2d |
|- ( ( ph /\ X = Z ) -> ( ( S evalSub1 R ) ` ( ( algSc ` P ) ` ( 0g ` U ) ) ) = ( ( S evalSub1 R ) ` X ) ) |
| 34 |
|
eqid |
|- ( S evalSub1 R ) = ( S evalSub1 R ) |
| 35 |
34 1 3 17 5 7
|
evls1var |
|- ( ph -> ( ( S evalSub1 R ) ` X ) = ( _I |` ( Base ` S ) ) ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ X = Z ) -> ( ( S evalSub1 R ) ` X ) = ( _I |` ( Base ` S ) ) ) |
| 37 |
24 33 36
|
3eqtrd |
|- ( ( ph /\ X = Z ) -> ( ( S evalSub1 R ) ` ( ( algSc ` P ) ` ( 0g ` S ) ) ) = ( _I |` ( Base ` S ) ) ) |
| 38 |
37
|
fveq1d |
|- ( ( ph /\ X = Z ) -> ( ( ( S evalSub1 R ) ` ( ( algSc ` P ) ` ( 0g ` S ) ) ) ` ( 1r ` S ) ) = ( ( _I |` ( Base ` S ) ) ` ( 1r ` S ) ) ) |
| 39 |
5
|
crngringd |
|- ( ph -> S e. Ring ) |
| 40 |
17 8 39
|
ringidcld |
|- ( ph -> ( 1r ` S ) e. ( Base ` S ) ) |
| 41 |
34 4 3 17 26 5 7 16 40
|
evls1scafv |
|- ( ph -> ( ( ( S evalSub1 R ) ` ( ( algSc ` P ) ` ( 0g ` S ) ) ) ` ( 1r ` S ) ) = ( 0g ` S ) ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ X = Z ) -> ( ( ( S evalSub1 R ) ` ( ( algSc ` P ) ` ( 0g ` S ) ) ) ` ( 1r ` S ) ) = ( 0g ` S ) ) |
| 43 |
|
fvresi |
|- ( ( 1r ` S ) e. ( Base ` S ) -> ( ( _I |` ( Base ` S ) ) ` ( 1r ` S ) ) = ( 1r ` S ) ) |
| 44 |
40 43
|
syl |
|- ( ph -> ( ( _I |` ( Base ` S ) ) ` ( 1r ` S ) ) = ( 1r ` S ) ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ X = Z ) -> ( ( _I |` ( Base ` S ) ) ` ( 1r ` S ) ) = ( 1r ` S ) ) |
| 46 |
38 42 45
|
3eqtr3rd |
|- ( ( ph /\ X = Z ) -> ( 1r ` S ) = ( 0g ` S ) ) |
| 47 |
11 46
|
mteqand |
|- ( ph -> X =/= Z ) |