Metamath Proof Explorer


Theorem deg1vr

Description: The degree of the variable polynomial is 1. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses deg1vr.1 D = deg 1 R
deg1vr.2 P = Poly 1 R
deg1vr.3 X = var 1 R
deg1vr.4 φ R NzRing
Assertion deg1vr φ D X = 1

Proof

Step Hyp Ref Expression
1 deg1vr.1 D = deg 1 R
2 deg1vr.2 P = Poly 1 R
3 deg1vr.3 X = var 1 R
4 deg1vr.4 φ R NzRing
5 nzrring R NzRing R Ring
6 4 5 syl φ R Ring
7 2 ply1sca R Ring R = Scalar P
8 6 7 syl φ R = Scalar P
9 8 fveq2d φ 1 R = 1 Scalar P
10 9 oveq1d φ 1 R P 1 mulGrp P X = 1 Scalar P P 1 mulGrp P X
11 2 ply1lmod R Ring P LMod
12 6 11 syl φ P LMod
13 eqid Base P = Base P
14 3 2 13 vr1cl R Ring X Base P
15 6 14 syl φ X Base P
16 eqid mulGrp P = mulGrp P
17 16 13 mgpbas Base P = Base mulGrp P
18 eqid mulGrp P = mulGrp P
19 17 18 mulg1 X Base P 1 mulGrp P X = X
20 15 19 syl φ 1 mulGrp P X = X
21 20 15 eqeltrd φ 1 mulGrp P X Base P
22 eqid Scalar P = Scalar P
23 eqid P = P
24 eqid 1 Scalar P = 1 Scalar P
25 13 22 23 24 lmodvs1 P LMod 1 mulGrp P X Base P 1 Scalar P P 1 mulGrp P X = 1 mulGrp P X
26 12 21 25 syl2anc φ 1 Scalar P P 1 mulGrp P X = 1 mulGrp P X
27 10 26 20 3eqtrd φ 1 R P 1 mulGrp P X = X
28 27 fveq2d φ D 1 R P 1 mulGrp P X = D X
29 eqid Base R = Base R
30 eqid 1 R = 1 R
31 29 30 ringidcl R Ring 1 R Base R
32 6 31 syl φ 1 R Base R
33 eqid 0 R = 0 R
34 30 33 nzrnz R NzRing 1 R 0 R
35 4 34 syl φ 1 R 0 R
36 1nn0 1 0
37 36 a1i φ 1 0
38 1 29 2 3 23 16 18 33 deg1tm R Ring 1 R Base R 1 R 0 R 1 0 D 1 R P 1 mulGrp P X = 1
39 6 32 35 37 38 syl121anc φ D 1 R P 1 mulGrp P X = 1
40 28 39 eqtr3d φ D X = 1