Step |
Hyp |
Ref |
Expression |
1 |
|
deg1vr.1 |
|- D = ( deg1 ` R ) |
2 |
|
deg1vr.2 |
|- P = ( Poly1 ` R ) |
3 |
|
deg1vr.3 |
|- X = ( var1 ` R ) |
4 |
|
deg1vr.4 |
|- ( ph -> R e. NzRing ) |
5 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
6 |
4 5
|
syl |
|- ( ph -> R e. Ring ) |
7 |
2
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
8 |
6 7
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
9 |
8
|
fveq2d |
|- ( ph -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) |
10 |
9
|
oveq1d |
|- ( ph -> ( ( 1r ` R ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) |
11 |
2
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
12 |
6 11
|
syl |
|- ( ph -> P e. LMod ) |
13 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
14 |
3 2 13
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` P ) ) |
15 |
6 14
|
syl |
|- ( ph -> X e. ( Base ` P ) ) |
16 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
17 |
16 13
|
mgpbas |
|- ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) |
18 |
|
eqid |
|- ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) |
19 |
17 18
|
mulg1 |
|- ( X e. ( Base ` P ) -> ( 1 ( .g ` ( mulGrp ` P ) ) X ) = X ) |
20 |
15 19
|
syl |
|- ( ph -> ( 1 ( .g ` ( mulGrp ` P ) ) X ) = X ) |
21 |
20 15
|
eqeltrd |
|- ( ph -> ( 1 ( .g ` ( mulGrp ` P ) ) X ) e. ( Base ` P ) ) |
22 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
23 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
24 |
|
eqid |
|- ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) |
25 |
13 22 23 24
|
lmodvs1 |
|- ( ( P e. LMod /\ ( 1 ( .g ` ( mulGrp ` P ) ) X ) e. ( Base ` P ) ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) |
26 |
12 21 25
|
syl2anc |
|- ( ph -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) |
27 |
10 26 20
|
3eqtrd |
|- ( ph -> ( ( 1r ` R ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = X ) |
28 |
27
|
fveq2d |
|- ( ph -> ( D ` ( ( 1r ` R ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) = ( D ` X ) ) |
29 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
30 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
31 |
29 30
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
32 |
6 31
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
33 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
34 |
30 33
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
35 |
4 34
|
syl |
|- ( ph -> ( 1r ` R ) =/= ( 0g ` R ) ) |
36 |
|
1nn0 |
|- 1 e. NN0 |
37 |
36
|
a1i |
|- ( ph -> 1 e. NN0 ) |
38 |
1 29 2 3 23 16 18 33
|
deg1tm |
|- ( ( R e. Ring /\ ( ( 1r ` R ) e. ( Base ` R ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) /\ 1 e. NN0 ) -> ( D ` ( ( 1r ` R ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) = 1 ) |
39 |
6 32 35 37 38
|
syl121anc |
|- ( ph -> ( D ` ( ( 1r ` R ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) = 1 ) |
40 |
28 39
|
eqtr3d |
|- ( ph -> ( D ` X ) = 1 ) |