Metamath Proof Explorer


Theorem coe1vr1

Description: Polynomial coefficient of the variable. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses coe1vr1.1 P = Poly 1 R
coe1vr1.2 X = var 1 R
coe1vr1.3 φ R Ring
coe1vr1.4 0 ˙ = 0 R
coe1vr1.5 1 ˙ = 1 R
Assertion coe1vr1 φ coe 1 X = k 0 if k = 1 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 coe1vr1.1 P = Poly 1 R
2 coe1vr1.2 X = var 1 R
3 coe1vr1.3 φ R Ring
4 coe1vr1.4 0 ˙ = 0 R
5 coe1vr1.5 1 ˙ = 1 R
6 eqid Base P = Base P
7 2 1 6 vr1cl R Ring X Base P
8 eqid mulGrp P = mulGrp P
9 8 6 mgpbas Base P = Base mulGrp P
10 eqid mulGrp P = mulGrp P
11 9 10 mulg1 X Base P 1 mulGrp P X = X
12 3 7 11 3syl φ 1 mulGrp P X = X
13 12 fveq2d φ coe 1 1 mulGrp P X = coe 1 X
14 1nn0 1 0
15 14 a1i φ 1 0
16 1 2 10 3 15 4 5 coe1mon φ coe 1 1 mulGrp P X = k 0 if k = 1 1 ˙ 0 ˙
17 13 16 eqtr3d φ coe 1 X = k 0 if k = 1 1 ˙ 0 ˙