Metamath Proof Explorer


Theorem coe1vr1

Description: Polynomial coefficient of the variable. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses coe1vr1.1
|- P = ( Poly1 ` R )
coe1vr1.2
|- X = ( var1 ` R )
coe1vr1.3
|- ( ph -> R e. Ring )
coe1vr1.4
|- .0. = ( 0g ` R )
coe1vr1.5
|- .1. = ( 1r ` R )
Assertion coe1vr1
|- ( ph -> ( coe1 ` X ) = ( k e. NN0 |-> if ( k = 1 , .1. , .0. ) ) )

Proof

Step Hyp Ref Expression
1 coe1vr1.1
 |-  P = ( Poly1 ` R )
2 coe1vr1.2
 |-  X = ( var1 ` R )
3 coe1vr1.3
 |-  ( ph -> R e. Ring )
4 coe1vr1.4
 |-  .0. = ( 0g ` R )
5 coe1vr1.5
 |-  .1. = ( 1r ` R )
6 eqid
 |-  ( Base ` P ) = ( Base ` P )
7 2 1 6 vr1cl
 |-  ( R e. Ring -> X e. ( Base ` P ) )
8 eqid
 |-  ( mulGrp ` P ) = ( mulGrp ` P )
9 8 6 mgpbas
 |-  ( Base ` P ) = ( Base ` ( mulGrp ` P ) )
10 eqid
 |-  ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) )
11 9 10 mulg1
 |-  ( X e. ( Base ` P ) -> ( 1 ( .g ` ( mulGrp ` P ) ) X ) = X )
12 3 7 11 3syl
 |-  ( ph -> ( 1 ( .g ` ( mulGrp ` P ) ) X ) = X )
13 12 fveq2d
 |-  ( ph -> ( coe1 ` ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = ( coe1 ` X ) )
14 1nn0
 |-  1 e. NN0
15 14 a1i
 |-  ( ph -> 1 e. NN0 )
16 1 2 10 3 15 4 5 coe1mon
 |-  ( ph -> ( coe1 ` ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = ( k e. NN0 |-> if ( k = 1 , .1. , .0. ) ) )
17 13 16 eqtr3d
 |-  ( ph -> ( coe1 ` X ) = ( k e. NN0 |-> if ( k = 1 , .1. , .0. ) ) )