Step |
Hyp |
Ref |
Expression |
1 |
|
ply1moneq.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1moneq.x |
|- X = ( var1 ` R ) |
3 |
|
ply1moneq.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
4 |
|
coe1mon.r |
|- ( ph -> R e. Ring ) |
5 |
|
coe1mon.n |
|- ( ph -> N e. NN0 ) |
6 |
|
coe1mon.0 |
|- .0. = ( 0g ` R ) |
7 |
|
coe1mon.1 |
|- .1. = ( 1r ` R ) |
8 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
9 |
4 8
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
10 |
9
|
fveq2d |
|- ( ph -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) |
11 |
7 10
|
eqtrid |
|- ( ph -> .1. = ( 1r ` ( Scalar ` P ) ) ) |
12 |
11
|
oveq1d |
|- ( ph -> ( .1. ( .s ` P ) ( N .^ X ) ) = ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( N .^ X ) ) ) |
13 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
14 |
4 13
|
syl |
|- ( ph -> P e. LMod ) |
15 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
16 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
17 |
1 2 15 3 16
|
ply1moncl |
|- ( ( R e. Ring /\ N e. NN0 ) -> ( N .^ X ) e. ( Base ` P ) ) |
18 |
4 5 17
|
syl2anc |
|- ( ph -> ( N .^ X ) e. ( Base ` P ) ) |
19 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
20 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
21 |
|
eqid |
|- ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) |
22 |
16 19 20 21
|
lmodvs1 |
|- ( ( P e. LMod /\ ( N .^ X ) e. ( Base ` P ) ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( N .^ X ) ) = ( N .^ X ) ) |
23 |
14 18 22
|
syl2anc |
|- ( ph -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( N .^ X ) ) = ( N .^ X ) ) |
24 |
12 23
|
eqtrd |
|- ( ph -> ( .1. ( .s ` P ) ( N .^ X ) ) = ( N .^ X ) ) |
25 |
24
|
fveq2d |
|- ( ph -> ( coe1 ` ( .1. ( .s ` P ) ( N .^ X ) ) ) = ( coe1 ` ( N .^ X ) ) ) |
26 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
27 |
26 7
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
28 |
4 27
|
syl |
|- ( ph -> .1. e. ( Base ` R ) ) |
29 |
6 26 1 2 20 15 3
|
coe1tm |
|- ( ( R e. Ring /\ .1. e. ( Base ` R ) /\ N e. NN0 ) -> ( coe1 ` ( .1. ( .s ` P ) ( N .^ X ) ) ) = ( k e. NN0 |-> if ( k = N , .1. , .0. ) ) ) |
30 |
4 28 5 29
|
syl3anc |
|- ( ph -> ( coe1 ` ( .1. ( .s ` P ) ( N .^ X ) ) ) = ( k e. NN0 |-> if ( k = N , .1. , .0. ) ) ) |
31 |
25 30
|
eqtr3d |
|- ( ph -> ( coe1 ` ( N .^ X ) ) = ( k e. NN0 |-> if ( k = N , .1. , .0. ) ) ) |