| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1moneq.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1moneq.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 3 |
|
ply1moneq.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 4 |
|
coe1mon.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
coe1mon.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 6 |
|
coe1mon.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 7 |
|
coe1mon.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 8 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 11 |
7 10
|
eqtrid |
⊢ ( 𝜑 → 1 = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝜑 → ( 1 ( ·𝑠 ‘ 𝑃 ) ( 𝑁 ↑ 𝑋 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑁 ↑ 𝑋 ) ) ) |
| 13 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 14 |
4 13
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 15 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 17 |
1 2 15 3 16
|
ply1moncl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 18 |
4 5 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 19 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 20 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 21 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) |
| 22 |
16 19 20 21
|
lmodvs1 |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑁 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ↑ 𝑋 ) ) |
| 23 |
14 18 22
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ↑ 𝑋 ) ) |
| 24 |
12 23
|
eqtrd |
⊢ ( 𝜑 → ( 1 ( ·𝑠 ‘ 𝑃 ) ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ↑ 𝑋 ) ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( coe1 ‘ ( 1 ( ·𝑠 ‘ 𝑃 ) ( 𝑁 ↑ 𝑋 ) ) ) = ( coe1 ‘ ( 𝑁 ↑ 𝑋 ) ) ) |
| 26 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 27 |
26 7
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 28 |
4 27
|
syl |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 29 |
6 26 1 2 20 15 3
|
coe1tm |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Base ‘ 𝑅 ) ∧ 𝑁 ∈ ℕ0 ) → ( coe1 ‘ ( 1 ( ·𝑠 ‘ 𝑃 ) ( 𝑁 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝑁 , 1 , 0 ) ) ) |
| 30 |
4 28 5 29
|
syl3anc |
⊢ ( 𝜑 → ( coe1 ‘ ( 1 ( ·𝑠 ‘ 𝑃 ) ( 𝑁 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝑁 , 1 , 0 ) ) ) |
| 31 |
25 30
|
eqtr3d |
⊢ ( 𝜑 → ( coe1 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝑁 , 1 , 0 ) ) ) |