Metamath Proof Explorer


Theorem coe1zfv

Description: The coefficients of the zero univariate polynomial. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses coe1zfv.1 P = Poly 1 R
coe1zfv.2 Z = 0 P
coe1zfv.3 0 ˙ = 0 R
coe1zfv.4 φ R Ring
coe1zfv.5 φ N 0
Assertion coe1zfv φ coe 1 Z N = 0 ˙

Proof

Step Hyp Ref Expression
1 coe1zfv.1 P = Poly 1 R
2 coe1zfv.2 Z = 0 P
3 coe1zfv.3 0 ˙ = 0 R
4 coe1zfv.4 φ R Ring
5 coe1zfv.5 φ N 0
6 1 2 3 coe1z R Ring coe 1 Z = 0 × 0 ˙
7 4 6 syl φ coe 1 Z = 0 × 0 ˙
8 7 fveq1d φ coe 1 Z N = 0 × 0 ˙ N
9 3 fvexi 0 ˙ V
10 9 fvconst2 N 0 0 × 0 ˙ N = 0 ˙
11 5 10 syl φ 0 × 0 ˙ N = 0 ˙
12 8 11 eqtrd φ coe 1 Z N = 0 ˙