| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1mul3le.d |
|- D = ( deg1 ` R ) |
| 2 |
|
deg1mul3le.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
deg1mul3le.k |
|- K = ( Base ` R ) |
| 4 |
|
deg1mul3le.b |
|- B = ( Base ` P ) |
| 5 |
|
deg1mul3le.t |
|- .x. = ( .r ` P ) |
| 6 |
|
deg1mul3le.a |
|- A = ( algSc ` P ) |
| 7 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> P e. Ring ) |
| 9 |
2 6 3 4
|
ply1sclf |
|- ( R e. Ring -> A : K --> B ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> A : K --> B ) |
| 11 |
|
simp2 |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> F e. K ) |
| 12 |
10 11
|
ffvelcdmd |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> ( A ` F ) e. B ) |
| 13 |
|
simp3 |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> G e. B ) |
| 14 |
4 5
|
ringcl |
|- ( ( P e. Ring /\ ( A ` F ) e. B /\ G e. B ) -> ( ( A ` F ) .x. G ) e. B ) |
| 15 |
8 12 13 14
|
syl3anc |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> ( ( A ` F ) .x. G ) e. B ) |
| 16 |
|
eqid |
|- ( coe1 ` ( ( A ` F ) .x. G ) ) = ( coe1 ` ( ( A ` F ) .x. G ) ) |
| 17 |
16 4 2 3
|
coe1f |
|- ( ( ( A ` F ) .x. G ) e. B -> ( coe1 ` ( ( A ` F ) .x. G ) ) : NN0 --> K ) |
| 18 |
15 17
|
syl |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> ( coe1 ` ( ( A ` F ) .x. G ) ) : NN0 --> K ) |
| 19 |
|
eldifi |
|- ( a e. ( NN0 \ ( ( coe1 ` G ) supp ( 0g ` R ) ) ) -> a e. NN0 ) |
| 20 |
|
simpl1 |
|- ( ( ( R e. Ring /\ F e. K /\ G e. B ) /\ a e. NN0 ) -> R e. Ring ) |
| 21 |
|
simpl2 |
|- ( ( ( R e. Ring /\ F e. K /\ G e. B ) /\ a e. NN0 ) -> F e. K ) |
| 22 |
|
simpl3 |
|- ( ( ( R e. Ring /\ F e. K /\ G e. B ) /\ a e. NN0 ) -> G e. B ) |
| 23 |
|
simpr |
|- ( ( ( R e. Ring /\ F e. K /\ G e. B ) /\ a e. NN0 ) -> a e. NN0 ) |
| 24 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 25 |
2 4 3 6 5 24
|
coe1sclmulfv |
|- ( ( R e. Ring /\ ( F e. K /\ G e. B ) /\ a e. NN0 ) -> ( ( coe1 ` ( ( A ` F ) .x. G ) ) ` a ) = ( F ( .r ` R ) ( ( coe1 ` G ) ` a ) ) ) |
| 26 |
20 21 22 23 25
|
syl121anc |
|- ( ( ( R e. Ring /\ F e. K /\ G e. B ) /\ a e. NN0 ) -> ( ( coe1 ` ( ( A ` F ) .x. G ) ) ` a ) = ( F ( .r ` R ) ( ( coe1 ` G ) ` a ) ) ) |
| 27 |
19 26
|
sylan2 |
|- ( ( ( R e. Ring /\ F e. K /\ G e. B ) /\ a e. ( NN0 \ ( ( coe1 ` G ) supp ( 0g ` R ) ) ) ) -> ( ( coe1 ` ( ( A ` F ) .x. G ) ) ` a ) = ( F ( .r ` R ) ( ( coe1 ` G ) ` a ) ) ) |
| 28 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
| 29 |
28 4 2 3
|
coe1f |
|- ( G e. B -> ( coe1 ` G ) : NN0 --> K ) |
| 30 |
29
|
3ad2ant3 |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> ( coe1 ` G ) : NN0 --> K ) |
| 31 |
|
ssidd |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> ( ( coe1 ` G ) supp ( 0g ` R ) ) C_ ( ( coe1 ` G ) supp ( 0g ` R ) ) ) |
| 32 |
|
nn0ex |
|- NN0 e. _V |
| 33 |
32
|
a1i |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> NN0 e. _V ) |
| 34 |
|
fvexd |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> ( 0g ` R ) e. _V ) |
| 35 |
30 31 33 34
|
suppssr |
|- ( ( ( R e. Ring /\ F e. K /\ G e. B ) /\ a e. ( NN0 \ ( ( coe1 ` G ) supp ( 0g ` R ) ) ) ) -> ( ( coe1 ` G ) ` a ) = ( 0g ` R ) ) |
| 36 |
35
|
oveq2d |
|- ( ( ( R e. Ring /\ F e. K /\ G e. B ) /\ a e. ( NN0 \ ( ( coe1 ` G ) supp ( 0g ` R ) ) ) ) -> ( F ( .r ` R ) ( ( coe1 ` G ) ` a ) ) = ( F ( .r ` R ) ( 0g ` R ) ) ) |
| 37 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 38 |
3 24 37
|
ringrz |
|- ( ( R e. Ring /\ F e. K ) -> ( F ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 39 |
38
|
3adant3 |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> ( F ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 40 |
39
|
adantr |
|- ( ( ( R e. Ring /\ F e. K /\ G e. B ) /\ a e. ( NN0 \ ( ( coe1 ` G ) supp ( 0g ` R ) ) ) ) -> ( F ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 41 |
27 36 40
|
3eqtrd |
|- ( ( ( R e. Ring /\ F e. K /\ G e. B ) /\ a e. ( NN0 \ ( ( coe1 ` G ) supp ( 0g ` R ) ) ) ) -> ( ( coe1 ` ( ( A ` F ) .x. G ) ) ` a ) = ( 0g ` R ) ) |
| 42 |
18 41
|
suppss |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> ( ( coe1 ` ( ( A ` F ) .x. G ) ) supp ( 0g ` R ) ) C_ ( ( coe1 ` G ) supp ( 0g ` R ) ) ) |
| 43 |
|
suppssdm |
|- ( ( coe1 ` G ) supp ( 0g ` R ) ) C_ dom ( coe1 ` G ) |
| 44 |
43 30
|
fssdm |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> ( ( coe1 ` G ) supp ( 0g ` R ) ) C_ NN0 ) |
| 45 |
|
nn0ssre |
|- NN0 C_ RR |
| 46 |
|
ressxr |
|- RR C_ RR* |
| 47 |
45 46
|
sstri |
|- NN0 C_ RR* |
| 48 |
44 47
|
sstrdi |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> ( ( coe1 ` G ) supp ( 0g ` R ) ) C_ RR* ) |
| 49 |
|
supxrss |
|- ( ( ( ( coe1 ` ( ( A ` F ) .x. G ) ) supp ( 0g ` R ) ) C_ ( ( coe1 ` G ) supp ( 0g ` R ) ) /\ ( ( coe1 ` G ) supp ( 0g ` R ) ) C_ RR* ) -> sup ( ( ( coe1 ` ( ( A ` F ) .x. G ) ) supp ( 0g ` R ) ) , RR* , < ) <_ sup ( ( ( coe1 ` G ) supp ( 0g ` R ) ) , RR* , < ) ) |
| 50 |
42 48 49
|
syl2anc |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> sup ( ( ( coe1 ` ( ( A ` F ) .x. G ) ) supp ( 0g ` R ) ) , RR* , < ) <_ sup ( ( ( coe1 ` G ) supp ( 0g ` R ) ) , RR* , < ) ) |
| 51 |
1 2 4 37 16
|
deg1val |
|- ( ( ( A ` F ) .x. G ) e. B -> ( D ` ( ( A ` F ) .x. G ) ) = sup ( ( ( coe1 ` ( ( A ` F ) .x. G ) ) supp ( 0g ` R ) ) , RR* , < ) ) |
| 52 |
15 51
|
syl |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> ( D ` ( ( A ` F ) .x. G ) ) = sup ( ( ( coe1 ` ( ( A ` F ) .x. G ) ) supp ( 0g ` R ) ) , RR* , < ) ) |
| 53 |
1 2 4 37 28
|
deg1val |
|- ( G e. B -> ( D ` G ) = sup ( ( ( coe1 ` G ) supp ( 0g ` R ) ) , RR* , < ) ) |
| 54 |
53
|
3ad2ant3 |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> ( D ` G ) = sup ( ( ( coe1 ` G ) supp ( 0g ` R ) ) , RR* , < ) ) |
| 55 |
50 52 54
|
3brtr4d |
|- ( ( R e. Ring /\ F e. K /\ G e. B ) -> ( D ` ( ( A ` F ) .x. G ) ) <_ ( D ` G ) ) |