Metamath Proof Explorer


Theorem deg1mul3le

Description: Degree of multiplication of a polynomial on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1mul3le.d 𝐷 = ( deg1𝑅 )
deg1mul3le.p 𝑃 = ( Poly1𝑅 )
deg1mul3le.k 𝐾 = ( Base ‘ 𝑅 )
deg1mul3le.b 𝐵 = ( Base ‘ 𝑃 )
deg1mul3le.t · = ( .r𝑃 )
deg1mul3le.a 𝐴 = ( algSc ‘ 𝑃 )
Assertion deg1mul3le ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( 𝐷 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) ≤ ( 𝐷𝐺 ) )

Proof

Step Hyp Ref Expression
1 deg1mul3le.d 𝐷 = ( deg1𝑅 )
2 deg1mul3le.p 𝑃 = ( Poly1𝑅 )
3 deg1mul3le.k 𝐾 = ( Base ‘ 𝑅 )
4 deg1mul3le.b 𝐵 = ( Base ‘ 𝑃 )
5 deg1mul3le.t · = ( .r𝑃 )
6 deg1mul3le.a 𝐴 = ( algSc ‘ 𝑃 )
7 2 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
8 7 3ad2ant1 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → 𝑃 ∈ Ring )
9 2 6 3 4 ply1sclf ( 𝑅 ∈ Ring → 𝐴 : 𝐾𝐵 )
10 9 3ad2ant1 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → 𝐴 : 𝐾𝐵 )
11 simp2 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → 𝐹𝐾 )
12 10 11 ffvelrnd ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( 𝐴𝐹 ) ∈ 𝐵 )
13 simp3 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → 𝐺𝐵 )
14 4 5 ringcl ( ( 𝑃 ∈ Ring ∧ ( 𝐴𝐹 ) ∈ 𝐵𝐺𝐵 ) → ( ( 𝐴𝐹 ) · 𝐺 ) ∈ 𝐵 )
15 8 12 13 14 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( ( 𝐴𝐹 ) · 𝐺 ) ∈ 𝐵 )
16 eqid ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) = ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) )
17 16 4 2 3 coe1f ( ( ( 𝐴𝐹 ) · 𝐺 ) ∈ 𝐵 → ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) : ℕ0𝐾 )
18 15 17 syl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) : ℕ0𝐾 )
19 eldifi ( 𝑎 ∈ ( ℕ0 ∖ ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) ) → 𝑎 ∈ ℕ0 )
20 simpl1 ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) ∧ 𝑎 ∈ ℕ0 ) → 𝑅 ∈ Ring )
21 simpl2 ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) ∧ 𝑎 ∈ ℕ0 ) → 𝐹𝐾 )
22 simpl3 ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) ∧ 𝑎 ∈ ℕ0 ) → 𝐺𝐵 )
23 simpr ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) ∧ 𝑎 ∈ ℕ0 ) → 𝑎 ∈ ℕ0 )
24 eqid ( .r𝑅 ) = ( .r𝑅 )
25 2 4 3 6 5 24 coe1sclmulfv ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐾𝐺𝐵 ) ∧ 𝑎 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) ‘ 𝑎 ) = ( 𝐹 ( .r𝑅 ) ( ( coe1𝐺 ) ‘ 𝑎 ) ) )
26 20 21 22 23 25 syl121anc ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) ∧ 𝑎 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) ‘ 𝑎 ) = ( 𝐹 ( .r𝑅 ) ( ( coe1𝐺 ) ‘ 𝑎 ) ) )
27 19 26 sylan2 ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ∖ ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) ) ) → ( ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) ‘ 𝑎 ) = ( 𝐹 ( .r𝑅 ) ( ( coe1𝐺 ) ‘ 𝑎 ) ) )
28 eqid ( coe1𝐺 ) = ( coe1𝐺 )
29 28 4 2 3 coe1f ( 𝐺𝐵 → ( coe1𝐺 ) : ℕ0𝐾 )
30 29 3ad2ant3 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( coe1𝐺 ) : ℕ0𝐾 )
31 ssidd ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) ⊆ ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) )
32 nn0ex 0 ∈ V
33 32 a1i ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ℕ0 ∈ V )
34 fvexd ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( 0g𝑅 ) ∈ V )
35 30 31 33 34 suppssr ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ∖ ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) ) ) → ( ( coe1𝐺 ) ‘ 𝑎 ) = ( 0g𝑅 ) )
36 35 oveq2d ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ∖ ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) ) ) → ( 𝐹 ( .r𝑅 ) ( ( coe1𝐺 ) ‘ 𝑎 ) ) = ( 𝐹 ( .r𝑅 ) ( 0g𝑅 ) ) )
37 eqid ( 0g𝑅 ) = ( 0g𝑅 )
38 3 24 37 ringrz ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾 ) → ( 𝐹 ( .r𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
39 38 3adant3 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( 𝐹 ( .r𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
40 39 adantr ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ∖ ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) ) ) → ( 𝐹 ( .r𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
41 27 36 40 3eqtrd ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ∖ ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) ) ) → ( ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) ‘ 𝑎 ) = ( 0g𝑅 ) )
42 18 41 suppss ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) supp ( 0g𝑅 ) ) ⊆ ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) )
43 suppssdm ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) ⊆ dom ( coe1𝐺 )
44 43 30 fssdm ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) ⊆ ℕ0 )
45 nn0ssre 0 ⊆ ℝ
46 ressxr ℝ ⊆ ℝ*
47 45 46 sstri 0 ⊆ ℝ*
48 44 47 sstrdi ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) ⊆ ℝ* )
49 supxrss ( ( ( ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) supp ( 0g𝑅 ) ) ⊆ ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) ∧ ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) ⊆ ℝ* ) → sup ( ( ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) supp ( 0g𝑅 ) ) , ℝ* , < ) ≤ sup ( ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) , ℝ* , < ) )
50 42 48 49 syl2anc ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → sup ( ( ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) supp ( 0g𝑅 ) ) , ℝ* , < ) ≤ sup ( ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) , ℝ* , < ) )
51 1 2 4 37 16 deg1val ( ( ( 𝐴𝐹 ) · 𝐺 ) ∈ 𝐵 → ( 𝐷 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) = sup ( ( ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) supp ( 0g𝑅 ) ) , ℝ* , < ) )
52 15 51 syl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( 𝐷 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) = sup ( ( ( coe1 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) supp ( 0g𝑅 ) ) , ℝ* , < ) )
53 1 2 4 37 28 deg1val ( 𝐺𝐵 → ( 𝐷𝐺 ) = sup ( ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) , ℝ* , < ) )
54 53 3ad2ant3 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( 𝐷𝐺 ) = sup ( ( ( coe1𝐺 ) supp ( 0g𝑅 ) ) , ℝ* , < ) )
55 50 52 54 3brtr4d ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵 ) → ( 𝐷 ‘ ( ( 𝐴𝐹 ) · 𝐺 ) ) ≤ ( 𝐷𝐺 ) )