Step |
Hyp |
Ref |
Expression |
1 |
|
deg1mul3le.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1mul3le.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1mul3le.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
deg1mul3le.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
deg1mul3le.t |
⊢ · = ( .r ‘ 𝑃 ) |
6 |
|
deg1mul3le.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
7 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
9 |
2 6 3 4
|
ply1sclf |
⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 ⟶ 𝐵 ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → 𝐴 : 𝐾 ⟶ 𝐵 ) |
11 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 ∈ 𝐾 ) |
12 |
10 11
|
ffvelrnd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐴 ‘ 𝐹 ) ∈ 𝐵 ) |
13 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
14 |
4 5
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝐴 ‘ 𝐹 ) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ∈ 𝐵 ) |
15 |
8 12 13 14
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ∈ 𝐵 ) |
16 |
|
eqid |
⊢ ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) = ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) |
17 |
16 4 2 3
|
coe1f |
⊢ ( ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ∈ 𝐵 → ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) : ℕ0 ⟶ 𝐾 ) |
18 |
15 17
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) : ℕ0 ⟶ 𝐾 ) |
19 |
|
eldifi |
⊢ ( 𝑎 ∈ ( ℕ0 ∖ ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) → 𝑎 ∈ ℕ0 ) |
20 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑎 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
21 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑎 ∈ ℕ0 ) → 𝐹 ∈ 𝐾 ) |
22 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑎 ∈ ℕ0 ) → 𝐺 ∈ 𝐵 ) |
23 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑎 ∈ ℕ0 ) → 𝑎 ∈ ℕ0 ) |
24 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
25 |
2 4 3 6 5 24
|
coe1sclmulfv |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑎 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) ‘ 𝑎 ) = ( 𝐹 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑎 ) ) ) |
26 |
20 21 22 23 25
|
syl121anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑎 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) ‘ 𝑎 ) = ( 𝐹 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑎 ) ) ) |
27 |
19 26
|
sylan2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ∖ ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) ‘ 𝑎 ) = ( 𝐹 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑎 ) ) ) |
28 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
29 |
28 4 2 3
|
coe1f |
⊢ ( 𝐺 ∈ 𝐵 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ 𝐾 ) |
30 |
29
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ 𝐾 ) |
31 |
|
ssidd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) |
32 |
|
nn0ex |
⊢ ℕ0 ∈ V |
33 |
32
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ℕ0 ∈ V ) |
34 |
|
fvexd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ( 0g ‘ 𝑅 ) ∈ V ) |
35 |
30 31 33 34
|
suppssr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ∖ ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( coe1 ‘ 𝐺 ) ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ) |
36 |
35
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ∖ ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝐹 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑎 ) ) = ( 𝐹 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
37 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
38 |
3 24 37
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐹 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
39 |
38
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ∖ ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝐹 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
41 |
27 36 40
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ∖ ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ) |
42 |
18 41
|
suppss |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) |
43 |
|
suppssdm |
⊢ ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ⊆ dom ( coe1 ‘ 𝐺 ) |
44 |
43 30
|
fssdm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ⊆ ℕ0 ) |
45 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
46 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
47 |
45 46
|
sstri |
⊢ ℕ0 ⊆ ℝ* |
48 |
44 47
|
sstrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ⊆ ℝ* ) |
49 |
|
supxrss |
⊢ ( ( ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ∧ ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ⊆ ℝ* ) → sup ( ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ≤ sup ( ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
50 |
42 48 49
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → sup ( ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ≤ sup ( ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
51 |
1 2 4 37 16
|
deg1val |
⊢ ( ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ∈ 𝐵 → ( 𝐷 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) = sup ( ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
52 |
15 51
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐷 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) = sup ( ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
53 |
1 2 4 37 28
|
deg1val |
⊢ ( 𝐺 ∈ 𝐵 → ( 𝐷 ‘ 𝐺 ) = sup ( ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
54 |
53
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐺 ) = sup ( ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
55 |
50 52 54
|
3brtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐷 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) ≤ ( 𝐷 ‘ 𝐺 ) ) |