| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1mul3le.d |
|
| 2 |
|
deg1mul3le.p |
|
| 3 |
|
deg1mul3le.k |
|
| 4 |
|
deg1mul3le.b |
|
| 5 |
|
deg1mul3le.t |
|
| 6 |
|
deg1mul3le.a |
|
| 7 |
2
|
ply1ring |
|
| 8 |
7
|
3ad2ant1 |
|
| 9 |
2 6 3 4
|
ply1sclf |
|
| 10 |
9
|
3ad2ant1 |
|
| 11 |
|
simp2 |
|
| 12 |
10 11
|
ffvelcdmd |
|
| 13 |
|
simp3 |
|
| 14 |
4 5
|
ringcl |
|
| 15 |
8 12 13 14
|
syl3anc |
|
| 16 |
|
eqid |
|
| 17 |
16 4 2 3
|
coe1f |
|
| 18 |
15 17
|
syl |
|
| 19 |
|
eldifi |
|
| 20 |
|
simpl1 |
|
| 21 |
|
simpl2 |
|
| 22 |
|
simpl3 |
|
| 23 |
|
simpr |
|
| 24 |
|
eqid |
|
| 25 |
2 4 3 6 5 24
|
coe1sclmulfv |
|
| 26 |
20 21 22 23 25
|
syl121anc |
|
| 27 |
19 26
|
sylan2 |
|
| 28 |
|
eqid |
|
| 29 |
28 4 2 3
|
coe1f |
|
| 30 |
29
|
3ad2ant3 |
|
| 31 |
|
ssidd |
|
| 32 |
|
nn0ex |
|
| 33 |
32
|
a1i |
|
| 34 |
|
fvexd |
|
| 35 |
30 31 33 34
|
suppssr |
|
| 36 |
35
|
oveq2d |
|
| 37 |
|
eqid |
|
| 38 |
3 24 37
|
ringrz |
|
| 39 |
38
|
3adant3 |
|
| 40 |
39
|
adantr |
|
| 41 |
27 36 40
|
3eqtrd |
|
| 42 |
18 41
|
suppss |
|
| 43 |
|
suppssdm |
|
| 44 |
43 30
|
fssdm |
|
| 45 |
|
nn0ssre |
|
| 46 |
|
ressxr |
|
| 47 |
45 46
|
sstri |
|
| 48 |
44 47
|
sstrdi |
|
| 49 |
|
supxrss |
|
| 50 |
42 48 49
|
syl2anc |
|
| 51 |
1 2 4 37 16
|
deg1val |
|
| 52 |
15 51
|
syl |
|
| 53 |
1 2 4 37 28
|
deg1val |
|
| 54 |
53
|
3ad2ant3 |
|
| 55 |
50 52 54
|
3brtr4d |
|