Metamath Proof Explorer


Theorem rtelextdg2lem

Description: Lemma for rtelextdg2 : If an element X is a solution of a quadratic equation, then the degree of its field extension is at most 2. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses rtelextdg2.1 K = E 𝑠 F
rtelextdg2.2 L = E 𝑠 E fldGen F X
rtelextdg2.3 0 ˙ = 0 E
rtelextdg2.4 P = Poly 1 K
rtelextdg2.5 V = Base E
rtelextdg2.6 · ˙ = E
rtelextdg2.7 + ˙ = + E
rtelextdg2.8 × ˙ = mulGrp E
rtelextdg2.9 φ E Field
rtelextdg2.10 φ F SubDRing E
rtelextdg2.11 φ X V
rtelextdg2.12 φ A F
rtelextdg2.13 φ B F
rtelextdg2.14 φ 2 × ˙ X + ˙ A · ˙ X + ˙ B = 0 ˙
rtelextdg2lem.1 Y = var 1 K
rtelextdg2lem.2 ˙ = + P
rtelextdg2lem.3 ˙ = P
rtelextdg2lem.4 ˙ = mulGrp P
rtelextdg2lem.5 U = algSc P
rtelextdg2lem.6 G = 2 ˙ Y ˙ U A ˙ Y ˙ U B
Assertion rtelextdg2lem φ L .:. K 2

Proof

Step Hyp Ref Expression
1 rtelextdg2.1 K = E 𝑠 F
2 rtelextdg2.2 L = E 𝑠 E fldGen F X
3 rtelextdg2.3 0 ˙ = 0 E
4 rtelextdg2.4 P = Poly 1 K
5 rtelextdg2.5 V = Base E
6 rtelextdg2.6 · ˙ = E
7 rtelextdg2.7 + ˙ = + E
8 rtelextdg2.8 × ˙ = mulGrp E
9 rtelextdg2.9 φ E Field
10 rtelextdg2.10 φ F SubDRing E
11 rtelextdg2.11 φ X V
12 rtelextdg2.12 φ A F
13 rtelextdg2.13 φ B F
14 rtelextdg2.14 φ 2 × ˙ X + ˙ A · ˙ X + ˙ B = 0 ˙
15 rtelextdg2lem.1 Y = var 1 K
16 rtelextdg2lem.2 ˙ = + P
17 rtelextdg2lem.3 ˙ = P
18 rtelextdg2lem.4 ˙ = mulGrp P
19 rtelextdg2lem.5 U = algSc P
20 rtelextdg2lem.6 G = 2 ˙ Y ˙ U A ˙ Y ˙ U B
21 eqid deg 1 E = deg 1 E
22 eqid E minPoly F = E minPoly F
23 fveq2 p = G E evalSub 1 F p = E evalSub 1 F G
24 23 fveq1d p = G E evalSub 1 F p X = E evalSub 1 F G X
25 24 eqeq1d p = G E evalSub 1 F p X = 0 ˙ E evalSub 1 F G X = 0 ˙
26 eqid Base P = Base P
27 fldsdrgfld E Field F SubDRing E E 𝑠 F Field
28 9 10 27 syl2anc φ E 𝑠 F Field
29 28 fldcrngd φ E 𝑠 F CRing
30 1 29 eqeltrid φ K CRing
31 30 crngringd φ K Ring
32 4 ply1ring K Ring P Ring
33 31 32 syl φ P Ring
34 33 ringgrpd φ P Grp
35 eqid mulGrp P = mulGrp P
36 35 26 mgpbas Base P = Base mulGrp P
37 35 ringmgp P Ring mulGrp P Mnd
38 33 37 syl φ mulGrp P Mnd
39 2nn0 2 0
40 39 a1i φ 2 0
41 15 4 26 vr1cl K Ring Y Base P
42 31 41 syl φ Y Base P
43 36 18 38 40 42 mulgnn0cld φ 2 ˙ Y Base P
44 9 fldcrngd φ E CRing
45 sdrgsubrg F SubDRing E F SubRing E
46 10 45 syl φ F SubRing E
47 4 1 19 26 44 46 12 ressasclcl φ U A Base P
48 26 17 33 47 42 ringcld φ U A ˙ Y Base P
49 4 1 19 26 44 46 13 ressasclcl φ U B Base P
50 26 16 34 48 49 grpcld φ U A ˙ Y ˙ U B Base P
51 26 16 34 43 50 grpcld φ 2 ˙ Y ˙ U A ˙ Y ˙ U B Base P
52 20 51 eqeltrid φ G Base P
53 20 fveq2i coe 1 G = coe 1 2 ˙ Y ˙ U A ˙ Y ˙ U B
54 53 fveq1i coe 1 G 2 = coe 1 2 ˙ Y ˙ U A ˙ Y ˙ U B 2
55 eqid + K = + K
56 4 26 16 55 coe1addfv K Ring 2 ˙ Y Base P U A ˙ Y ˙ U B Base P 2 0 coe 1 2 ˙ Y ˙ U A ˙ Y ˙ U B 2 = coe 1 2 ˙ Y 2 + K coe 1 U A ˙ Y ˙ U B 2
57 31 43 50 40 56 syl31anc φ coe 1 2 ˙ Y ˙ U A ˙ Y ˙ U B 2 = coe 1 2 ˙ Y 2 + K coe 1 U A ˙ Y ˙ U B 2
58 eqid 0 K = 0 K
59 eqid 1 K = 1 K
60 4 15 18 31 40 58 59 coe1mon φ coe 1 2 ˙ Y = i 0 if i = 2 1 K 0 K
61 simpr φ i = 2 i = 2
62 61 iftrued φ i = 2 if i = 2 1 K 0 K = 1 K
63 fvexd φ 1 K V
64 60 62 40 63 fvmptd φ coe 1 2 ˙ Y 2 = 1 K
65 4 26 16 55 coe1addfv K Ring U A ˙ Y Base P U B Base P 2 0 coe 1 U A ˙ Y ˙ U B 2 = coe 1 U A ˙ Y 2 + K coe 1 U B 2
66 31 48 49 40 65 syl31anc φ coe 1 U A ˙ Y ˙ U B 2 = coe 1 U A ˙ Y 2 + K coe 1 U B 2
67 5 sdrgss F SubDRing E F V
68 1 5 ressbas2 F V F = Base K
69 10 67 68 3syl φ F = Base K
70 12 69 eleqtrd φ A Base K
71 eqid Base K = Base K
72 eqid K = K
73 4 26 71 19 17 72 coe1sclmulfv K Ring A Base K Y Base P 2 0 coe 1 U A ˙ Y 2 = A K coe 1 Y 2
74 31 70 42 40 73 syl121anc φ coe 1 U A ˙ Y 2 = A K coe 1 Y 2
75 4 15 31 58 59 coe1vr1 φ coe 1 Y = i 0 if i = 1 1 K 0 K
76 1ne2 1 2
77 76 nesymi ¬ 2 = 1
78 eqeq1 i = 2 i = 1 2 = 1
79 77 78 mtbiri i = 2 ¬ i = 1
80 79 adantl φ i = 2 ¬ i = 1
81 80 iffalsed φ i = 2 if i = 1 1 K 0 K = 0 K
82 fvexd φ 0 K V
83 75 81 40 82 fvmptd φ coe 1 Y 2 = 0 K
84 83 oveq2d φ A K coe 1 Y 2 = A K 0 K
85 71 72 58 31 70 ringrzd φ A K 0 K = 0 K
86 74 84 85 3eqtrd φ coe 1 U A ˙ Y 2 = 0 K
87 13 69 eleqtrd φ B Base K
88 4 19 71 58 coe1scl K Ring B Base K coe 1 U B = i 0 if i = 0 B 0 K
89 31 87 88 syl2anc φ coe 1 U B = i 0 if i = 0 B 0 K
90 0ne2 0 2
91 90 neii ¬ 0 = 2
92 eqeq1 i = 0 i = 2 0 = 2
93 91 92 mtbiri i = 0 ¬ i = 2
94 93 61 nsyl3 φ i = 2 ¬ i = 0
95 94 iffalsed φ i = 2 if i = 0 B 0 K = 0 K
96 89 95 40 82 fvmptd φ coe 1 U B 2 = 0 K
97 86 96 oveq12d φ coe 1 U A ˙ Y 2 + K coe 1 U B 2 = 0 K + K 0 K
98 31 ringgrpd φ K Grp
99 71 58 grpidcl K Grp 0 K Base K
100 98 99 syl φ 0 K Base K
101 71 55 58 98 100 grpridd φ 0 K + K 0 K = 0 K
102 66 97 101 3eqtrd φ coe 1 U A ˙ Y ˙ U B 2 = 0 K
103 64 102 oveq12d φ coe 1 2 ˙ Y 2 + K coe 1 U A ˙ Y ˙ U B 2 = 1 K + K 0 K
104 71 59 ringidcl K Ring 1 K Base K
105 31 104 syl φ 1 K Base K
106 71 55 58 98 105 grpridd φ 1 K + K 0 K = 1 K
107 44 crngringd φ E Ring
108 eqid 1 E = 1 E
109 108 subrg1cl F SubRing E 1 E F
110 46 109 syl φ 1 E F
111 10 67 syl φ F V
112 1 5 108 ress1r E Ring 1 E F F V 1 E = 1 K
113 107 110 111 112 syl3anc φ 1 E = 1 K
114 106 113 eqtr4d φ 1 K + K 0 K = 1 E
115 57 103 114 3eqtrd φ coe 1 2 ˙ Y ˙ U A ˙ Y ˙ U B 2 = 1 E
116 54 115 eqtrid φ coe 1 G 2 = 1 E
117 9 flddrngd φ E DivRing
118 drngnzr E DivRing E NzRing
119 108 3 nzrnz E NzRing 1 E 0 ˙
120 117 118 119 3syl φ 1 E 0 ˙
121 116 120 eqnetrd φ coe 1 G 2 0 ˙
122 fveq2 G = 0 P coe 1 G = coe 1 0 P
123 122 fveq1d G = 0 P coe 1 G 2 = coe 1 0 P 2
124 eqid 0 P = 0 P
125 4 124 58 31 40 coe1zfv φ coe 1 0 P 2 = 0 K
126 107 ringgrpd φ E Grp
127 126 grpmndd φ E Mnd
128 subrgsubg F SubRing E F SubGrp E
129 46 128 syl φ F SubGrp E
130 3 subg0cl F SubGrp E 0 ˙ F
131 129 130 syl φ 0 ˙ F
132 1 5 3 ress0g E Mnd 0 ˙ F F V 0 ˙ = 0 K
133 127 131 111 132 syl3anc φ 0 ˙ = 0 K
134 125 133 eqtr4d φ coe 1 0 P 2 = 0 ˙
135 123 134 sylan9eqr φ G = 0 P coe 1 G 2 = 0 ˙
136 121 135 mteqand φ G 0 P
137 20 fveq2i deg 1 K G = deg 1 K 2 ˙ Y ˙ U A ˙ Y ˙ U B
138 eqid deg 1 K = deg 1 K
139 2re 2
140 139 rexri 2 *
141 140 a1i φ 2 *
142 138 4 26 deg1xrcl U A ˙ Y Base P deg 1 K U A ˙ Y *
143 48 142 syl φ deg 1 K U A ˙ Y *
144 1xr 1 *
145 144 a1i φ 1 *
146 138 4 71 26 17 19 deg1mul3le K Ring A Base K Y Base P deg 1 K U A ˙ Y deg 1 K Y
147 31 70 42 146 syl3anc φ deg 1 K U A ˙ Y deg 1 K Y
148 1 28 eqeltrid φ K Field
149 148 flddrngd φ K DivRing
150 drngnzr K DivRing K NzRing
151 149 150 syl φ K NzRing
152 138 4 15 151 deg1vr φ deg 1 K Y = 1
153 147 152 breqtrd φ deg 1 K U A ˙ Y 1
154 1lt2 1 < 2
155 154 a1i φ 1 < 2
156 143 145 141 153 155 xrlelttrd φ deg 1 K U A ˙ Y < 2
157 138 4 26 deg1xrcl U B Base P deg 1 K U B *
158 49 157 syl φ deg 1 K U B *
159 0xr 0 *
160 159 a1i φ 0 *
161 138 4 71 19 deg1sclle K Ring B Base K deg 1 K U B 0
162 31 87 161 syl2anc φ deg 1 K U B 0
163 2pos 0 < 2
164 163 a1i φ 0 < 2
165 158 160 141 162 164 xrlelttrd φ deg 1 K U B < 2
166 4 138 31 26 16 48 49 141 156 165 deg1addlt φ deg 1 K U A ˙ Y ˙ U B < 2
167 138 4 15 35 18 deg1pw K NzRing 2 0 deg 1 K 2 ˙ Y = 2
168 151 40 167 syl2anc φ deg 1 K 2 ˙ Y = 2
169 166 168 breqtrrd φ deg 1 K U A ˙ Y ˙ U B < deg 1 K 2 ˙ Y
170 4 138 31 26 16 43 50 169 deg1add φ deg 1 K 2 ˙ Y ˙ U A ˙ Y ˙ U B = deg 1 K 2 ˙ Y
171 170 168 eqtrd φ deg 1 K 2 ˙ Y ˙ U A ˙ Y ˙ U B = 2
172 137 171 eqtrid φ deg 1 K G = 2
173 172 fveq2d φ coe 1 G deg 1 K G = coe 1 G 2
174 173 116 113 3eqtrd φ coe 1 G deg 1 K G = 1 K
175 eqid Monic 1p K = Monic 1p K
176 4 26 124 138 175 59 ismon1p G Monic 1p K G Base P G 0 P coe 1 G deg 1 K G = 1 K
177 52 136 174 176 syl3anbrc φ G Monic 1p K
178 eqid E evalSub 1 F = E evalSub 1 F
179 eqid eval 1 E = eval 1 E
180 178 5 4 1 26 179 44 46 ressply1evl φ E evalSub 1 F = eval 1 E Base P
181 180 fveq1d φ E evalSub 1 F G = eval 1 E Base P G
182 52 fvresd φ eval 1 E Base P G = eval 1 E G
183 181 182 eqtrd φ E evalSub 1 F G = eval 1 E G
184 183 fveq1d φ E evalSub 1 F G X = eval 1 E G X
185 eqid Poly 1 E = Poly 1 E
186 eqid Base Poly 1 E = Base Poly 1 E
187 eqid coe 1 G = coe 1 G
188 eqid coe 1 G 2 = coe 1 G 2
189 eqid coe 1 G 1 = coe 1 G 1
190 eqid coe 1 G 0 = coe 1 G 0
191 eqid PwSer 1 K = PwSer 1 K
192 eqid Base PwSer 1 K = Base PwSer 1 K
193 185 1 4 26 46 191 192 186 ressply1bas2 φ Base P = Base PwSer 1 K Base Poly 1 E
194 52 193 eleqtrd φ G Base PwSer 1 K Base Poly 1 E
195 194 elin2d φ G Base Poly 1 E
196 1 21 4 26 52 46 ressdeg1 φ deg 1 E G = deg 1 K G
197 196 172 eqtrd φ deg 1 E G = 2
198 185 179 5 186 6 7 8 187 21 188 189 190 44 195 197 11 evl1deg2 φ eval 1 E G X = coe 1 G 2 · ˙ 2 × ˙ X + ˙ coe 1 G 1 · ˙ X + ˙ coe 1 G 0
199 116 oveq1d φ coe 1 G 2 · ˙ 2 × ˙ X = 1 E · ˙ 2 × ˙ X
200 eqid mulGrp E = mulGrp E
201 200 5 mgpbas V = Base mulGrp E
202 200 ringmgp E Ring mulGrp E Mnd
203 107 202 syl φ mulGrp E Mnd
204 201 8 203 40 11 mulgnn0cld φ 2 × ˙ X V
205 5 6 108 107 204 ringlidmd φ 1 E · ˙ 2 × ˙ X = 2 × ˙ X
206 199 205 eqtrd φ coe 1 G 2 · ˙ 2 × ˙ X = 2 × ˙ X
207 53 fveq1i coe 1 G 1 = coe 1 2 ˙ Y ˙ U A ˙ Y ˙ U B 1
208 1nn0 1 0
209 208 a1i φ 1 0
210 4 26 16 55 coe1addfv K Ring 2 ˙ Y Base P U A ˙ Y ˙ U B Base P 1 0 coe 1 2 ˙ Y ˙ U A ˙ Y ˙ U B 1 = coe 1 2 ˙ Y 1 + K coe 1 U A ˙ Y ˙ U B 1
211 31 43 50 209 210 syl31anc φ coe 1 2 ˙ Y ˙ U A ˙ Y ˙ U B 1 = coe 1 2 ˙ Y 1 + K coe 1 U A ˙ Y ˙ U B 1
212 76 neii ¬ 1 = 2
213 eqeq1 i = 1 i = 2 1 = 2
214 213 notbid i = 1 ¬ i = 2 ¬ 1 = 2
215 214 adantl φ i = 1 ¬ i = 2 ¬ 1 = 2
216 212 215 mpbiri φ i = 1 ¬ i = 2
217 216 iffalsed φ i = 1 if i = 2 1 K 0 K = 0 K
218 60 217 209 82 fvmptd φ coe 1 2 ˙ Y 1 = 0 K
219 4 26 16 55 coe1addfv K Ring U A ˙ Y Base P U B Base P 1 0 coe 1 U A ˙ Y ˙ U B 1 = coe 1 U A ˙ Y 1 + K coe 1 U B 1
220 31 48 49 209 219 syl31anc φ coe 1 U A ˙ Y ˙ U B 1 = coe 1 U A ˙ Y 1 + K coe 1 U B 1
221 4 26 71 19 17 72 coe1sclmulfv K Ring A Base K Y Base P 1 0 coe 1 U A ˙ Y 1 = A K coe 1 Y 1
222 31 70 42 209 221 syl121anc φ coe 1 U A ˙ Y 1 = A K coe 1 Y 1
223 simpr φ i = 1 i = 1
224 223 iftrued φ i = 1 if i = 1 1 K 0 K = 1 K
225 75 224 209 63 fvmptd φ coe 1 Y 1 = 1 K
226 225 oveq2d φ A K coe 1 Y 1 = A K 1 K
227 71 72 59 31 70 ringridmd φ A K 1 K = A
228 222 226 227 3eqtrd φ coe 1 U A ˙ Y 1 = A
229 0ne1 0 1
230 229 nesymi ¬ 1 = 0
231 eqeq1 i = 1 i = 0 1 = 0
232 230 231 mtbiri i = 1 ¬ i = 0
233 232 adantl φ i = 1 ¬ i = 0
234 233 iffalsed φ i = 1 if i = 0 B 0 K = 0 K
235 89 234 209 82 fvmptd φ coe 1 U B 1 = 0 K
236 228 235 oveq12d φ coe 1 U A ˙ Y 1 + K coe 1 U B 1 = A + K 0 K
237 71 55 58 98 70 grpridd φ A + K 0 K = A
238 220 236 237 3eqtrd φ coe 1 U A ˙ Y ˙ U B 1 = A
239 218 238 oveq12d φ coe 1 2 ˙ Y 1 + K coe 1 U A ˙ Y ˙ U B 1 = 0 K + K A
240 71 55 58 98 70 grplidd φ 0 K + K A = A
241 211 239 240 3eqtrd φ coe 1 2 ˙ Y ˙ U A ˙ Y ˙ U B 1 = A
242 207 241 eqtrid φ coe 1 G 1 = A
243 242 oveq1d φ coe 1 G 1 · ˙ X = A · ˙ X
244 53 fveq1i coe 1 G 0 = coe 1 2 ˙ Y ˙ U A ˙ Y ˙ U B 0
245 0nn0 0 0
246 245 a1i φ 0 0
247 4 26 16 55 coe1addfv K Ring 2 ˙ Y Base P U A ˙ Y ˙ U B Base P 0 0 coe 1 2 ˙ Y ˙ U A ˙ Y ˙ U B 0 = coe 1 2 ˙ Y 0 + K coe 1 U A ˙ Y ˙ U B 0
248 31 43 50 246 247 syl31anc φ coe 1 2 ˙ Y ˙ U A ˙ Y ˙ U B 0 = coe 1 2 ˙ Y 0 + K coe 1 U A ˙ Y ˙ U B 0
249 93 adantl φ i = 0 ¬ i = 2
250 249 iffalsed φ i = 0 if i = 2 1 K 0 K = 0 K
251 60 250 246 82 fvmptd φ coe 1 2 ˙ Y 0 = 0 K
252 4 26 16 55 coe1addfv K Ring U A ˙ Y Base P U B Base P 0 0 coe 1 U A ˙ Y ˙ U B 0 = coe 1 U A ˙ Y 0 + K coe 1 U B 0
253 31 48 49 246 252 syl31anc φ coe 1 U A ˙ Y ˙ U B 0 = coe 1 U A ˙ Y 0 + K coe 1 U B 0
254 4 26 71 19 17 72 coe1sclmulfv K Ring A Base K Y Base P 0 0 coe 1 U A ˙ Y 0 = A K coe 1 Y 0
255 31 70 42 246 254 syl121anc φ coe 1 U A ˙ Y 0 = A K coe 1 Y 0
256 229 neii ¬ 0 = 1
257 eqeq1 i = 0 i = 1 0 = 1
258 256 257 mtbiri i = 0 ¬ i = 1
259 258 adantl φ i = 0 ¬ i = 1
260 259 iffalsed φ i = 0 if i = 1 1 K 0 K = 0 K
261 75 260 246 82 fvmptd φ coe 1 Y 0 = 0 K
262 261 oveq2d φ A K coe 1 Y 0 = A K 0 K
263 255 262 85 3eqtrd φ coe 1 U A ˙ Y 0 = 0 K
264 4 19 71 ply1sclid K Ring B Base K B = coe 1 U B 0
265 31 87 264 syl2anc φ B = coe 1 U B 0
266 265 eqcomd φ coe 1 U B 0 = B
267 263 266 oveq12d φ coe 1 U A ˙ Y 0 + K coe 1 U B 0 = 0 K + K B
268 71 55 58 98 87 grplidd φ 0 K + K B = B
269 253 267 268 3eqtrd φ coe 1 U A ˙ Y ˙ U B 0 = B
270 251 269 oveq12d φ coe 1 2 ˙ Y 0 + K coe 1 U A ˙ Y ˙ U B 0 = 0 K + K B
271 248 270 268 3eqtrd φ coe 1 2 ˙ Y ˙ U A ˙ Y ˙ U B 0 = B
272 244 271 eqtrid φ coe 1 G 0 = B
273 243 272 oveq12d φ coe 1 G 1 · ˙ X + ˙ coe 1 G 0 = A · ˙ X + ˙ B
274 206 273 oveq12d φ coe 1 G 2 · ˙ 2 × ˙ X + ˙ coe 1 G 1 · ˙ X + ˙ coe 1 G 0 = 2 × ˙ X + ˙ A · ˙ X + ˙ B
275 274 14 eqtrd φ coe 1 G 2 · ˙ 2 × ˙ X + ˙ coe 1 G 1 · ˙ X + ˙ coe 1 G 0 = 0 ˙
276 184 198 275 3eqtrd φ E evalSub 1 F G X = 0 ˙
277 25 177 276 rspcedvdw φ p Monic 1p K E evalSub 1 F p X = 0 ˙
278 178 1 5 3 44 46 elirng φ X E IntgRing F X V p Monic 1p K E evalSub 1 F p X = 0 ˙
279 11 277 278 mpbir2and φ X E IntgRing F
280 1 2 21 22 9 10 279 algextdeg φ L .:. K = deg 1 E E minPoly F X
281 1 fveq2i Poly 1 K = Poly 1 E 𝑠 F
282 4 281 eqtri P = Poly 1 E 𝑠 F
283 eqid q dom E evalSub 1 F | E evalSub 1 F q X = 0 ˙ = q dom E evalSub 1 F | E evalSub 1 F q X = 0 ˙
284 eqid RSpan P = RSpan P
285 eqid idlGen 1p E 𝑠 F = idlGen 1p E 𝑠 F
286 178 282 5 9 10 11 3 283 284 285 22 minplycl φ E minPoly F X Base P
287 1 21 4 26 286 46 ressdeg1 φ deg 1 E E minPoly F X = deg 1 K E minPoly F X
288 280 287 eqtrd φ L .:. K = deg 1 K E minPoly F X
289 1 fveq2i deg 1 K = deg 1 E 𝑠 F
290 178 282 5 9 10 11 3 22 289 124 26 276 52 136 minplymindeg φ deg 1 K E minPoly F X deg 1 K G
291 288 290 eqbrtrd φ L .:. K deg 1 K G
292 291 172 breqtrd φ L .:. K 2