| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rtelextdg2.1 | ⊢ 𝐾  =  ( 𝐸  ↾s  𝐹 ) | 
						
							| 2 |  | rtelextdg2.2 | ⊢ 𝐿  =  ( 𝐸  ↾s  ( 𝐸  fldGen  ( 𝐹  ∪  { 𝑋 } ) ) ) | 
						
							| 3 |  | rtelextdg2.3 | ⊢  0   =  ( 0g ‘ 𝐸 ) | 
						
							| 4 |  | rtelextdg2.4 | ⊢ 𝑃  =  ( Poly1 ‘ 𝐾 ) | 
						
							| 5 |  | rtelextdg2.5 | ⊢ 𝑉  =  ( Base ‘ 𝐸 ) | 
						
							| 6 |  | rtelextdg2.6 | ⊢  ·   =  ( .r ‘ 𝐸 ) | 
						
							| 7 |  | rtelextdg2.7 | ⊢  +   =  ( +g ‘ 𝐸 ) | 
						
							| 8 |  | rtelextdg2.8 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝐸 ) ) | 
						
							| 9 |  | rtelextdg2.9 | ⊢ ( 𝜑  →  𝐸  ∈  Field ) | 
						
							| 10 |  | rtelextdg2.10 | ⊢ ( 𝜑  →  𝐹  ∈  ( SubDRing ‘ 𝐸 ) ) | 
						
							| 11 |  | rtelextdg2.11 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 12 |  | rtelextdg2.12 | ⊢ ( 𝜑  →  𝐴  ∈  𝐹 ) | 
						
							| 13 |  | rtelextdg2.13 | ⊢ ( 𝜑  →  𝐵  ∈  𝐹 ) | 
						
							| 14 |  | rtelextdg2.14 | ⊢ ( 𝜑  →  ( ( 2  ↑  𝑋 )  +  ( ( 𝐴  ·  𝑋 )  +  𝐵 ) )  =   0  ) | 
						
							| 15 |  | rtelextdg2lem.1 | ⊢ 𝑌  =  ( var1 ‘ 𝐾 ) | 
						
							| 16 |  | rtelextdg2lem.2 | ⊢  ⊕   =  ( +g ‘ 𝑃 ) | 
						
							| 17 |  | rtelextdg2lem.3 | ⊢  ⊗   =  ( .r ‘ 𝑃 ) | 
						
							| 18 |  | rtelextdg2lem.4 | ⊢  ∧   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 19 |  | rtelextdg2lem.5 | ⊢ 𝑈  =  ( algSc ‘ 𝑃 ) | 
						
							| 20 |  | rtelextdg2lem.6 | ⊢ 𝐺  =  ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) | 
						
							| 21 |  | eqid | ⊢ ( deg1 ‘ 𝐸 )  =  ( deg1 ‘ 𝐸 ) | 
						
							| 22 |  | eqid | ⊢ ( 𝐸  minPoly  𝐹 )  =  ( 𝐸  minPoly  𝐹 ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑝  =  𝐺  →  ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝑝 )  =  ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝐺 ) ) | 
						
							| 24 | 23 | fveq1d | ⊢ ( 𝑝  =  𝐺  →  ( ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝑝 ) ‘ 𝑋 )  =  ( ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝐺 ) ‘ 𝑋 ) ) | 
						
							| 25 | 24 | eqeq1d | ⊢ ( 𝑝  =  𝐺  →  ( ( ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝑝 ) ‘ 𝑋 )  =   0   ↔  ( ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝐺 ) ‘ 𝑋 )  =   0  ) ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 27 |  | fldsdrgfld | ⊢ ( ( 𝐸  ∈  Field  ∧  𝐹  ∈  ( SubDRing ‘ 𝐸 ) )  →  ( 𝐸  ↾s  𝐹 )  ∈  Field ) | 
						
							| 28 | 9 10 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝐸  ↾s  𝐹 )  ∈  Field ) | 
						
							| 29 | 28 | fldcrngd | ⊢ ( 𝜑  →  ( 𝐸  ↾s  𝐹 )  ∈  CRing ) | 
						
							| 30 | 1 29 | eqeltrid | ⊢ ( 𝜑  →  𝐾  ∈  CRing ) | 
						
							| 31 | 30 | crngringd | ⊢ ( 𝜑  →  𝐾  ∈  Ring ) | 
						
							| 32 | 4 | ply1ring | ⊢ ( 𝐾  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝜑  →  𝑃  ∈  Ring ) | 
						
							| 34 | 33 | ringgrpd | ⊢ ( 𝜑  →  𝑃  ∈  Grp ) | 
						
							| 35 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 36 | 35 26 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 37 | 35 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 38 | 33 37 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 39 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 40 | 39 | a1i | ⊢ ( 𝜑  →  2  ∈  ℕ0 ) | 
						
							| 41 | 15 4 26 | vr1cl | ⊢ ( 𝐾  ∈  Ring  →  𝑌  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 42 | 31 41 | syl | ⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 43 | 36 18 38 40 42 | mulgnn0cld | ⊢ ( 𝜑  →  ( 2  ∧  𝑌 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 44 | 9 | fldcrngd | ⊢ ( 𝜑  →  𝐸  ∈  CRing ) | 
						
							| 45 |  | sdrgsubrg | ⊢ ( 𝐹  ∈  ( SubDRing ‘ 𝐸 )  →  𝐹  ∈  ( SubRing ‘ 𝐸 ) ) | 
						
							| 46 | 10 45 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( SubRing ‘ 𝐸 ) ) | 
						
							| 47 | 4 1 19 26 44 46 12 | ressasclcl | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝐴 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 48 | 26 17 33 47 42 | ringcld | ⊢ ( 𝜑  →  ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 49 | 4 1 19 26 44 46 13 | ressasclcl | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝐵 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 50 | 26 16 34 48 49 | grpcld | ⊢ ( 𝜑  →  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 51 | 26 16 34 43 50 | grpcld | ⊢ ( 𝜑  →  ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 52 | 20 51 | eqeltrid | ⊢ ( 𝜑  →  𝐺  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 53 | 20 | fveq2i | ⊢ ( coe1 ‘ 𝐺 )  =  ( coe1 ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) | 
						
							| 54 | 53 | fveq1i | ⊢ ( ( coe1 ‘ 𝐺 ) ‘ 2 )  =  ( ( coe1 ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 2 ) | 
						
							| 55 |  | eqid | ⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ 𝐾 ) | 
						
							| 56 | 4 26 16 55 | coe1addfv | ⊢ ( ( ( 𝐾  ∈  Ring  ∧  ( 2  ∧  𝑌 )  ∈  ( Base ‘ 𝑃 )  ∧  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) )  ∈  ( Base ‘ 𝑃 ) )  ∧  2  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 2 )  =  ( ( ( coe1 ‘ ( 2  ∧  𝑌 ) ) ‘ 2 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 2 ) ) ) | 
						
							| 57 | 31 43 50 40 56 | syl31anc | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 2 )  =  ( ( ( coe1 ‘ ( 2  ∧  𝑌 ) ) ‘ 2 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 2 ) ) ) | 
						
							| 58 |  | eqid | ⊢ ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) | 
						
							| 59 |  | eqid | ⊢ ( 1r ‘ 𝐾 )  =  ( 1r ‘ 𝐾 ) | 
						
							| 60 | 4 15 18 31 40 58 59 | coe1mon | ⊢ ( 𝜑  →  ( coe1 ‘ ( 2  ∧  𝑌 ) )  =  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  2 ,  ( 1r ‘ 𝐾 ) ,  ( 0g ‘ 𝐾 ) ) ) ) | 
						
							| 61 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  =  2 )  →  𝑖  =  2 ) | 
						
							| 62 | 61 | iftrued | ⊢ ( ( 𝜑  ∧  𝑖  =  2 )  →  if ( 𝑖  =  2 ,  ( 1r ‘ 𝐾 ) ,  ( 0g ‘ 𝐾 ) )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 63 |  | fvexd | ⊢ ( 𝜑  →  ( 1r ‘ 𝐾 )  ∈  V ) | 
						
							| 64 | 60 62 40 63 | fvmptd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 2  ∧  𝑌 ) ) ‘ 2 )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 65 | 4 26 16 55 | coe1addfv | ⊢ ( ( ( 𝐾  ∈  Ring  ∧  ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑈 ‘ 𝐵 )  ∈  ( Base ‘ 𝑃 ) )  ∧  2  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 2 )  =  ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 2 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 2 ) ) ) | 
						
							| 66 | 31 48 49 40 65 | syl31anc | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 2 )  =  ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 2 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 2 ) ) ) | 
						
							| 67 | 5 | sdrgss | ⊢ ( 𝐹  ∈  ( SubDRing ‘ 𝐸 )  →  𝐹  ⊆  𝑉 ) | 
						
							| 68 | 1 5 | ressbas2 | ⊢ ( 𝐹  ⊆  𝑉  →  𝐹  =  ( Base ‘ 𝐾 ) ) | 
						
							| 69 | 10 67 68 | 3syl | ⊢ ( 𝜑  →  𝐹  =  ( Base ‘ 𝐾 ) ) | 
						
							| 70 | 12 69 | eleqtrd | ⊢ ( 𝜑  →  𝐴  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 71 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 72 |  | eqid | ⊢ ( .r ‘ 𝐾 )  =  ( .r ‘ 𝐾 ) | 
						
							| 73 | 4 26 71 19 17 72 | coe1sclmulfv | ⊢ ( ( 𝐾  ∈  Ring  ∧  ( 𝐴  ∈  ( Base ‘ 𝐾 )  ∧  𝑌  ∈  ( Base ‘ 𝑃 ) )  ∧  2  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 2 )  =  ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 2 ) ) ) | 
						
							| 74 | 31 70 42 40 73 | syl121anc | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 2 )  =  ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 2 ) ) ) | 
						
							| 75 | 4 15 31 58 59 | coe1vr1 | ⊢ ( 𝜑  →  ( coe1 ‘ 𝑌 )  =  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  1 ,  ( 1r ‘ 𝐾 ) ,  ( 0g ‘ 𝐾 ) ) ) ) | 
						
							| 76 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 77 | 76 | nesymi | ⊢ ¬  2  =  1 | 
						
							| 78 |  | eqeq1 | ⊢ ( 𝑖  =  2  →  ( 𝑖  =  1  ↔  2  =  1 ) ) | 
						
							| 79 | 77 78 | mtbiri | ⊢ ( 𝑖  =  2  →  ¬  𝑖  =  1 ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  =  2 )  →  ¬  𝑖  =  1 ) | 
						
							| 81 | 80 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑖  =  2 )  →  if ( 𝑖  =  1 ,  ( 1r ‘ 𝐾 ) ,  ( 0g ‘ 𝐾 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 82 |  | fvexd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐾 )  ∈  V ) | 
						
							| 83 | 75 81 40 82 | fvmptd | ⊢ ( 𝜑  →  ( ( coe1 ‘ 𝑌 ) ‘ 2 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( 𝜑  →  ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 2 ) )  =  ( 𝐴 ( .r ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) | 
						
							| 85 | 71 72 58 31 70 | ringrzd | ⊢ ( 𝜑  →  ( 𝐴 ( .r ‘ 𝐾 ) ( 0g ‘ 𝐾 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 86 | 74 84 85 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 2 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 87 | 13 69 | eleqtrd | ⊢ ( 𝜑  →  𝐵  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 88 | 4 19 71 58 | coe1scl | ⊢ ( ( 𝐾  ∈  Ring  ∧  𝐵  ∈  ( Base ‘ 𝐾 ) )  →  ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) )  =  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  𝐵 ,  ( 0g ‘ 𝐾 ) ) ) ) | 
						
							| 89 | 31 87 88 | syl2anc | ⊢ ( 𝜑  →  ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) )  =  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  𝐵 ,  ( 0g ‘ 𝐾 ) ) ) ) | 
						
							| 90 |  | 0ne2 | ⊢ 0  ≠  2 | 
						
							| 91 | 90 | neii | ⊢ ¬  0  =  2 | 
						
							| 92 |  | eqeq1 | ⊢ ( 𝑖  =  0  →  ( 𝑖  =  2  ↔  0  =  2 ) ) | 
						
							| 93 | 91 92 | mtbiri | ⊢ ( 𝑖  =  0  →  ¬  𝑖  =  2 ) | 
						
							| 94 | 93 61 | nsyl3 | ⊢ ( ( 𝜑  ∧  𝑖  =  2 )  →  ¬  𝑖  =  0 ) | 
						
							| 95 | 94 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑖  =  2 )  →  if ( 𝑖  =  0 ,  𝐵 ,  ( 0g ‘ 𝐾 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 96 | 89 95 40 82 | fvmptd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 2 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 97 | 86 96 | oveq12d | ⊢ ( 𝜑  →  ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 2 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 2 ) )  =  ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) | 
						
							| 98 | 31 | ringgrpd | ⊢ ( 𝜑  →  𝐾  ∈  Grp ) | 
						
							| 99 | 71 58 | grpidcl | ⊢ ( 𝐾  ∈  Grp  →  ( 0g ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 100 | 98 99 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 101 | 71 55 58 98 100 | grpridd | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 102 | 66 97 101 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 2 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 103 | 64 102 | oveq12d | ⊢ ( 𝜑  →  ( ( ( coe1 ‘ ( 2  ∧  𝑌 ) ) ‘ 2 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 2 ) )  =  ( ( 1r ‘ 𝐾 ) ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) | 
						
							| 104 | 71 59 | ringidcl | ⊢ ( 𝐾  ∈  Ring  →  ( 1r ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 105 | 31 104 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 106 | 71 55 58 98 105 | grpridd | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝐾 ) ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 107 | 44 | crngringd | ⊢ ( 𝜑  →  𝐸  ∈  Ring ) | 
						
							| 108 |  | eqid | ⊢ ( 1r ‘ 𝐸 )  =  ( 1r ‘ 𝐸 ) | 
						
							| 109 | 108 | subrg1cl | ⊢ ( 𝐹  ∈  ( SubRing ‘ 𝐸 )  →  ( 1r ‘ 𝐸 )  ∈  𝐹 ) | 
						
							| 110 | 46 109 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝐸 )  ∈  𝐹 ) | 
						
							| 111 | 10 67 | syl | ⊢ ( 𝜑  →  𝐹  ⊆  𝑉 ) | 
						
							| 112 | 1 5 108 | ress1r | ⊢ ( ( 𝐸  ∈  Ring  ∧  ( 1r ‘ 𝐸 )  ∈  𝐹  ∧  𝐹  ⊆  𝑉 )  →  ( 1r ‘ 𝐸 )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 113 | 107 110 111 112 | syl3anc | ⊢ ( 𝜑  →  ( 1r ‘ 𝐸 )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 114 | 106 113 | eqtr4d | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝐾 ) ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) )  =  ( 1r ‘ 𝐸 ) ) | 
						
							| 115 | 57 103 114 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 2 )  =  ( 1r ‘ 𝐸 ) ) | 
						
							| 116 | 54 115 | eqtrid | ⊢ ( 𝜑  →  ( ( coe1 ‘ 𝐺 ) ‘ 2 )  =  ( 1r ‘ 𝐸 ) ) | 
						
							| 117 | 9 | flddrngd | ⊢ ( 𝜑  →  𝐸  ∈  DivRing ) | 
						
							| 118 |  | drngnzr | ⊢ ( 𝐸  ∈  DivRing  →  𝐸  ∈  NzRing ) | 
						
							| 119 | 108 3 | nzrnz | ⊢ ( 𝐸  ∈  NzRing  →  ( 1r ‘ 𝐸 )  ≠   0  ) | 
						
							| 120 | 117 118 119 | 3syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝐸 )  ≠   0  ) | 
						
							| 121 | 116 120 | eqnetrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ 𝐺 ) ‘ 2 )  ≠   0  ) | 
						
							| 122 |  | fveq2 | ⊢ ( 𝐺  =  ( 0g ‘ 𝑃 )  →  ( coe1 ‘ 𝐺 )  =  ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) | 
						
							| 123 | 122 | fveq1d | ⊢ ( 𝐺  =  ( 0g ‘ 𝑃 )  →  ( ( coe1 ‘ 𝐺 ) ‘ 2 )  =  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 2 ) ) | 
						
							| 124 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 125 | 4 124 58 31 40 | coe1zfv | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 2 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 126 | 107 | ringgrpd | ⊢ ( 𝜑  →  𝐸  ∈  Grp ) | 
						
							| 127 | 126 | grpmndd | ⊢ ( 𝜑  →  𝐸  ∈  Mnd ) | 
						
							| 128 |  | subrgsubg | ⊢ ( 𝐹  ∈  ( SubRing ‘ 𝐸 )  →  𝐹  ∈  ( SubGrp ‘ 𝐸 ) ) | 
						
							| 129 | 46 128 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( SubGrp ‘ 𝐸 ) ) | 
						
							| 130 | 3 | subg0cl | ⊢ ( 𝐹  ∈  ( SubGrp ‘ 𝐸 )  →   0   ∈  𝐹 ) | 
						
							| 131 | 129 130 | syl | ⊢ ( 𝜑  →   0   ∈  𝐹 ) | 
						
							| 132 | 1 5 3 | ress0g | ⊢ ( ( 𝐸  ∈  Mnd  ∧   0   ∈  𝐹  ∧  𝐹  ⊆  𝑉 )  →   0   =  ( 0g ‘ 𝐾 ) ) | 
						
							| 133 | 127 131 111 132 | syl3anc | ⊢ ( 𝜑  →   0   =  ( 0g ‘ 𝐾 ) ) | 
						
							| 134 | 125 133 | eqtr4d | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 2 )  =   0  ) | 
						
							| 135 | 123 134 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝐺  =  ( 0g ‘ 𝑃 ) )  →  ( ( coe1 ‘ 𝐺 ) ‘ 2 )  =   0  ) | 
						
							| 136 | 121 135 | mteqand | ⊢ ( 𝜑  →  𝐺  ≠  ( 0g ‘ 𝑃 ) ) | 
						
							| 137 | 20 | fveq2i | ⊢ ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 )  =  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) | 
						
							| 138 |  | eqid | ⊢ ( deg1 ‘ 𝐾 )  =  ( deg1 ‘ 𝐾 ) | 
						
							| 139 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 140 | 139 | rexri | ⊢ 2  ∈  ℝ* | 
						
							| 141 | 140 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ* ) | 
						
							| 142 | 138 4 26 | deg1xrcl | ⊢ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ∈  ( Base ‘ 𝑃 )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) )  ∈  ℝ* ) | 
						
							| 143 | 48 142 | syl | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) )  ∈  ℝ* ) | 
						
							| 144 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 145 | 144 | a1i | ⊢ ( 𝜑  →  1  ∈  ℝ* ) | 
						
							| 146 | 138 4 71 26 17 19 | deg1mul3le | ⊢ ( ( 𝐾  ∈  Ring  ∧  𝐴  ∈  ( Base ‘ 𝐾 )  ∧  𝑌  ∈  ( Base ‘ 𝑃 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ 𝑌 ) ) | 
						
							| 147 | 31 70 42 146 | syl3anc | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ 𝑌 ) ) | 
						
							| 148 | 1 28 | eqeltrid | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 149 | 148 | flddrngd | ⊢ ( 𝜑  →  𝐾  ∈  DivRing ) | 
						
							| 150 |  | drngnzr | ⊢ ( 𝐾  ∈  DivRing  →  𝐾  ∈  NzRing ) | 
						
							| 151 | 149 150 | syl | ⊢ ( 𝜑  →  𝐾  ∈  NzRing ) | 
						
							| 152 | 138 4 15 151 | deg1vr | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ 𝑌 )  =  1 ) | 
						
							| 153 | 147 152 | breqtrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) )  ≤  1 ) | 
						
							| 154 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 155 | 154 | a1i | ⊢ ( 𝜑  →  1  <  2 ) | 
						
							| 156 | 143 145 141 153 155 | xrlelttrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) )  <  2 ) | 
						
							| 157 | 138 4 26 | deg1xrcl | ⊢ ( ( 𝑈 ‘ 𝐵 )  ∈  ( Base ‘ 𝑃 )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑈 ‘ 𝐵 ) )  ∈  ℝ* ) | 
						
							| 158 | 49 157 | syl | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑈 ‘ 𝐵 ) )  ∈  ℝ* ) | 
						
							| 159 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 160 | 159 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ* ) | 
						
							| 161 | 138 4 71 19 | deg1sclle | ⊢ ( ( 𝐾  ∈  Ring  ∧  𝐵  ∈  ( Base ‘ 𝐾 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑈 ‘ 𝐵 ) )  ≤  0 ) | 
						
							| 162 | 31 87 161 | syl2anc | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑈 ‘ 𝐵 ) )  ≤  0 ) | 
						
							| 163 |  | 2pos | ⊢ 0  <  2 | 
						
							| 164 | 163 | a1i | ⊢ ( 𝜑  →  0  <  2 ) | 
						
							| 165 | 158 160 141 162 164 | xrlelttrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑈 ‘ 𝐵 ) )  <  2 ) | 
						
							| 166 | 4 138 31 26 16 48 49 141 156 165 | deg1addlt | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) )  <  2 ) | 
						
							| 167 | 138 4 15 35 18 | deg1pw | ⊢ ( ( 𝐾  ∈  NzRing  ∧  2  ∈  ℕ0 )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 2  ∧  𝑌 ) )  =  2 ) | 
						
							| 168 | 151 40 167 | syl2anc | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 2  ∧  𝑌 ) )  =  2 ) | 
						
							| 169 | 166 168 | breqtrrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) )  <  ( ( deg1 ‘ 𝐾 ) ‘ ( 2  ∧  𝑌 ) ) ) | 
						
							| 170 | 4 138 31 26 16 43 50 169 | deg1add | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) )  =  ( ( deg1 ‘ 𝐾 ) ‘ ( 2  ∧  𝑌 ) ) ) | 
						
							| 171 | 170 168 | eqtrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) )  =  2 ) | 
						
							| 172 | 137 171 | eqtrid | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 )  =  2 ) | 
						
							| 173 | 172 | fveq2d | ⊢ ( 𝜑  →  ( ( coe1 ‘ 𝐺 ) ‘ ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) )  =  ( ( coe1 ‘ 𝐺 ) ‘ 2 ) ) | 
						
							| 174 | 173 116 113 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ 𝐺 ) ‘ ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 175 |  | eqid | ⊢ ( Monic1p ‘ 𝐾 )  =  ( Monic1p ‘ 𝐾 ) | 
						
							| 176 | 4 26 124 138 175 59 | ismon1p | ⊢ ( 𝐺  ∈  ( Monic1p ‘ 𝐾 )  ↔  ( 𝐺  ∈  ( Base ‘ 𝑃 )  ∧  𝐺  ≠  ( 0g ‘ 𝑃 )  ∧  ( ( coe1 ‘ 𝐺 ) ‘ ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) )  =  ( 1r ‘ 𝐾 ) ) ) | 
						
							| 177 | 52 136 174 176 | syl3anbrc | ⊢ ( 𝜑  →  𝐺  ∈  ( Monic1p ‘ 𝐾 ) ) | 
						
							| 178 |  | eqid | ⊢ ( 𝐸  evalSub1  𝐹 )  =  ( 𝐸  evalSub1  𝐹 ) | 
						
							| 179 |  | eqid | ⊢ ( eval1 ‘ 𝐸 )  =  ( eval1 ‘ 𝐸 ) | 
						
							| 180 | 178 5 4 1 26 179 44 46 | ressply1evl | ⊢ ( 𝜑  →  ( 𝐸  evalSub1  𝐹 )  =  ( ( eval1 ‘ 𝐸 )  ↾  ( Base ‘ 𝑃 ) ) ) | 
						
							| 181 | 180 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝐺 )  =  ( ( ( eval1 ‘ 𝐸 )  ↾  ( Base ‘ 𝑃 ) ) ‘ 𝐺 ) ) | 
						
							| 182 | 52 | fvresd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐸 )  ↾  ( Base ‘ 𝑃 ) ) ‘ 𝐺 )  =  ( ( eval1 ‘ 𝐸 ) ‘ 𝐺 ) ) | 
						
							| 183 | 181 182 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝐺 )  =  ( ( eval1 ‘ 𝐸 ) ‘ 𝐺 ) ) | 
						
							| 184 | 183 | fveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝐺 ) ‘ 𝑋 )  =  ( ( ( eval1 ‘ 𝐸 ) ‘ 𝐺 ) ‘ 𝑋 ) ) | 
						
							| 185 |  | eqid | ⊢ ( Poly1 ‘ 𝐸 )  =  ( Poly1 ‘ 𝐸 ) | 
						
							| 186 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝐸 ) )  =  ( Base ‘ ( Poly1 ‘ 𝐸 ) ) | 
						
							| 187 |  | eqid | ⊢ ( coe1 ‘ 𝐺 )  =  ( coe1 ‘ 𝐺 ) | 
						
							| 188 |  | eqid | ⊢ ( ( coe1 ‘ 𝐺 ) ‘ 2 )  =  ( ( coe1 ‘ 𝐺 ) ‘ 2 ) | 
						
							| 189 |  | eqid | ⊢ ( ( coe1 ‘ 𝐺 ) ‘ 1 )  =  ( ( coe1 ‘ 𝐺 ) ‘ 1 ) | 
						
							| 190 |  | eqid | ⊢ ( ( coe1 ‘ 𝐺 ) ‘ 0 )  =  ( ( coe1 ‘ 𝐺 ) ‘ 0 ) | 
						
							| 191 |  | eqid | ⊢ ( PwSer1 ‘ 𝐾 )  =  ( PwSer1 ‘ 𝐾 ) | 
						
							| 192 |  | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ 𝐾 ) )  =  ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) | 
						
							| 193 | 185 1 4 26 46 191 192 186 | ressply1bas2 | ⊢ ( 𝜑  →  ( Base ‘ 𝑃 )  =  ( ( Base ‘ ( PwSer1 ‘ 𝐾 ) )  ∩  ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) ) | 
						
							| 194 | 52 193 | eleqtrd | ⊢ ( 𝜑  →  𝐺  ∈  ( ( Base ‘ ( PwSer1 ‘ 𝐾 ) )  ∩  ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) ) | 
						
							| 195 | 194 | elin2d | ⊢ ( 𝜑  →  𝐺  ∈  ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) | 
						
							| 196 | 1 21 4 26 52 46 | ressdeg1 | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐸 ) ‘ 𝐺 )  =  ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) ) | 
						
							| 197 | 196 172 | eqtrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐸 ) ‘ 𝐺 )  =  2 ) | 
						
							| 198 | 185 179 5 186 6 7 8 187 21 188 189 190 44 195 197 11 | evl1deg2 | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐸 ) ‘ 𝐺 ) ‘ 𝑋 )  =  ( ( ( ( coe1 ‘ 𝐺 ) ‘ 2 )  ·  ( 2  ↑  𝑋 ) )  +  ( ( ( ( coe1 ‘ 𝐺 ) ‘ 1 )  ·  𝑋 )  +  ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) ) ) | 
						
							| 199 | 116 | oveq1d | ⊢ ( 𝜑  →  ( ( ( coe1 ‘ 𝐺 ) ‘ 2 )  ·  ( 2  ↑  𝑋 ) )  =  ( ( 1r ‘ 𝐸 )  ·  ( 2  ↑  𝑋 ) ) ) | 
						
							| 200 |  | eqid | ⊢ ( mulGrp ‘ 𝐸 )  =  ( mulGrp ‘ 𝐸 ) | 
						
							| 201 | 200 5 | mgpbas | ⊢ 𝑉  =  ( Base ‘ ( mulGrp ‘ 𝐸 ) ) | 
						
							| 202 | 200 | ringmgp | ⊢ ( 𝐸  ∈  Ring  →  ( mulGrp ‘ 𝐸 )  ∈  Mnd ) | 
						
							| 203 | 107 202 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝐸 )  ∈  Mnd ) | 
						
							| 204 | 201 8 203 40 11 | mulgnn0cld | ⊢ ( 𝜑  →  ( 2  ↑  𝑋 )  ∈  𝑉 ) | 
						
							| 205 | 5 6 108 107 204 | ringlidmd | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝐸 )  ·  ( 2  ↑  𝑋 ) )  =  ( 2  ↑  𝑋 ) ) | 
						
							| 206 | 199 205 | eqtrd | ⊢ ( 𝜑  →  ( ( ( coe1 ‘ 𝐺 ) ‘ 2 )  ·  ( 2  ↑  𝑋 ) )  =  ( 2  ↑  𝑋 ) ) | 
						
							| 207 | 53 | fveq1i | ⊢ ( ( coe1 ‘ 𝐺 ) ‘ 1 )  =  ( ( coe1 ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 1 ) | 
						
							| 208 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 209 | 208 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ0 ) | 
						
							| 210 | 4 26 16 55 | coe1addfv | ⊢ ( ( ( 𝐾  ∈  Ring  ∧  ( 2  ∧  𝑌 )  ∈  ( Base ‘ 𝑃 )  ∧  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) )  ∈  ( Base ‘ 𝑃 ) )  ∧  1  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 1 )  =  ( ( ( coe1 ‘ ( 2  ∧  𝑌 ) ) ‘ 1 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 1 ) ) ) | 
						
							| 211 | 31 43 50 209 210 | syl31anc | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 1 )  =  ( ( ( coe1 ‘ ( 2  ∧  𝑌 ) ) ‘ 1 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 1 ) ) ) | 
						
							| 212 | 76 | neii | ⊢ ¬  1  =  2 | 
						
							| 213 |  | eqeq1 | ⊢ ( 𝑖  =  1  →  ( 𝑖  =  2  ↔  1  =  2 ) ) | 
						
							| 214 | 213 | notbid | ⊢ ( 𝑖  =  1  →  ( ¬  𝑖  =  2  ↔  ¬  1  =  2 ) ) | 
						
							| 215 | 214 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  =  1 )  →  ( ¬  𝑖  =  2  ↔  ¬  1  =  2 ) ) | 
						
							| 216 | 212 215 | mpbiri | ⊢ ( ( 𝜑  ∧  𝑖  =  1 )  →  ¬  𝑖  =  2 ) | 
						
							| 217 | 216 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑖  =  1 )  →  if ( 𝑖  =  2 ,  ( 1r ‘ 𝐾 ) ,  ( 0g ‘ 𝐾 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 218 | 60 217 209 82 | fvmptd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 2  ∧  𝑌 ) ) ‘ 1 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 219 | 4 26 16 55 | coe1addfv | ⊢ ( ( ( 𝐾  ∈  Ring  ∧  ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑈 ‘ 𝐵 )  ∈  ( Base ‘ 𝑃 ) )  ∧  1  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 1 )  =  ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 1 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 1 ) ) ) | 
						
							| 220 | 31 48 49 209 219 | syl31anc | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 1 )  =  ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 1 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 1 ) ) ) | 
						
							| 221 | 4 26 71 19 17 72 | coe1sclmulfv | ⊢ ( ( 𝐾  ∈  Ring  ∧  ( 𝐴  ∈  ( Base ‘ 𝐾 )  ∧  𝑌  ∈  ( Base ‘ 𝑃 ) )  ∧  1  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 1 )  =  ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 1 ) ) ) | 
						
							| 222 | 31 70 42 209 221 | syl121anc | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 1 )  =  ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 1 ) ) ) | 
						
							| 223 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  =  1 )  →  𝑖  =  1 ) | 
						
							| 224 | 223 | iftrued | ⊢ ( ( 𝜑  ∧  𝑖  =  1 )  →  if ( 𝑖  =  1 ,  ( 1r ‘ 𝐾 ) ,  ( 0g ‘ 𝐾 ) )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 225 | 75 224 209 63 | fvmptd | ⊢ ( 𝜑  →  ( ( coe1 ‘ 𝑌 ) ‘ 1 )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 226 | 225 | oveq2d | ⊢ ( 𝜑  →  ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 1 ) )  =  ( 𝐴 ( .r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) | 
						
							| 227 | 71 72 59 31 70 | ringridmd | ⊢ ( 𝜑  →  ( 𝐴 ( .r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) )  =  𝐴 ) | 
						
							| 228 | 222 226 227 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 1 )  =  𝐴 ) | 
						
							| 229 |  | 0ne1 | ⊢ 0  ≠  1 | 
						
							| 230 | 229 | nesymi | ⊢ ¬  1  =  0 | 
						
							| 231 |  | eqeq1 | ⊢ ( 𝑖  =  1  →  ( 𝑖  =  0  ↔  1  =  0 ) ) | 
						
							| 232 | 230 231 | mtbiri | ⊢ ( 𝑖  =  1  →  ¬  𝑖  =  0 ) | 
						
							| 233 | 232 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  =  1 )  →  ¬  𝑖  =  0 ) | 
						
							| 234 | 233 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑖  =  1 )  →  if ( 𝑖  =  0 ,  𝐵 ,  ( 0g ‘ 𝐾 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 235 | 89 234 209 82 | fvmptd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 1 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 236 | 228 235 | oveq12d | ⊢ ( 𝜑  →  ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 1 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 1 ) )  =  ( 𝐴 ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) | 
						
							| 237 | 71 55 58 98 70 | grpridd | ⊢ ( 𝜑  →  ( 𝐴 ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) )  =  𝐴 ) | 
						
							| 238 | 220 236 237 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 1 )  =  𝐴 ) | 
						
							| 239 | 218 238 | oveq12d | ⊢ ( 𝜑  →  ( ( ( coe1 ‘ ( 2  ∧  𝑌 ) ) ‘ 1 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 1 ) )  =  ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) 𝐴 ) ) | 
						
							| 240 | 71 55 58 98 70 | grplidd | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) 𝐴 )  =  𝐴 ) | 
						
							| 241 | 211 239 240 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 1 )  =  𝐴 ) | 
						
							| 242 | 207 241 | eqtrid | ⊢ ( 𝜑  →  ( ( coe1 ‘ 𝐺 ) ‘ 1 )  =  𝐴 ) | 
						
							| 243 | 242 | oveq1d | ⊢ ( 𝜑  →  ( ( ( coe1 ‘ 𝐺 ) ‘ 1 )  ·  𝑋 )  =  ( 𝐴  ·  𝑋 ) ) | 
						
							| 244 | 53 | fveq1i | ⊢ ( ( coe1 ‘ 𝐺 ) ‘ 0 )  =  ( ( coe1 ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 0 ) | 
						
							| 245 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 246 | 245 | a1i | ⊢ ( 𝜑  →  0  ∈  ℕ0 ) | 
						
							| 247 | 4 26 16 55 | coe1addfv | ⊢ ( ( ( 𝐾  ∈  Ring  ∧  ( 2  ∧  𝑌 )  ∈  ( Base ‘ 𝑃 )  ∧  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) )  ∈  ( Base ‘ 𝑃 ) )  ∧  0  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 0 )  =  ( ( ( coe1 ‘ ( 2  ∧  𝑌 ) ) ‘ 0 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 0 ) ) ) | 
						
							| 248 | 31 43 50 246 247 | syl31anc | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 0 )  =  ( ( ( coe1 ‘ ( 2  ∧  𝑌 ) ) ‘ 0 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 0 ) ) ) | 
						
							| 249 | 93 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  ¬  𝑖  =  2 ) | 
						
							| 250 | 249 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  if ( 𝑖  =  2 ,  ( 1r ‘ 𝐾 ) ,  ( 0g ‘ 𝐾 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 251 | 60 250 246 82 | fvmptd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 2  ∧  𝑌 ) ) ‘ 0 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 252 | 4 26 16 55 | coe1addfv | ⊢ ( ( ( 𝐾  ∈  Ring  ∧  ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑈 ‘ 𝐵 )  ∈  ( Base ‘ 𝑃 ) )  ∧  0  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 0 )  =  ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 0 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 0 ) ) ) | 
						
							| 253 | 31 48 49 246 252 | syl31anc | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 0 )  =  ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 0 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 0 ) ) ) | 
						
							| 254 | 4 26 71 19 17 72 | coe1sclmulfv | ⊢ ( ( 𝐾  ∈  Ring  ∧  ( 𝐴  ∈  ( Base ‘ 𝐾 )  ∧  𝑌  ∈  ( Base ‘ 𝑃 ) )  ∧  0  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 0 )  =  ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 0 ) ) ) | 
						
							| 255 | 31 70 42 246 254 | syl121anc | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 0 )  =  ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 0 ) ) ) | 
						
							| 256 | 229 | neii | ⊢ ¬  0  =  1 | 
						
							| 257 |  | eqeq1 | ⊢ ( 𝑖  =  0  →  ( 𝑖  =  1  ↔  0  =  1 ) ) | 
						
							| 258 | 256 257 | mtbiri | ⊢ ( 𝑖  =  0  →  ¬  𝑖  =  1 ) | 
						
							| 259 | 258 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  ¬  𝑖  =  1 ) | 
						
							| 260 | 259 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  if ( 𝑖  =  1 ,  ( 1r ‘ 𝐾 ) ,  ( 0g ‘ 𝐾 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 261 | 75 260 246 82 | fvmptd | ⊢ ( 𝜑  →  ( ( coe1 ‘ 𝑌 ) ‘ 0 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 262 | 261 | oveq2d | ⊢ ( 𝜑  →  ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 0 ) )  =  ( 𝐴 ( .r ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) | 
						
							| 263 | 255 262 85 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 0 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 264 | 4 19 71 | ply1sclid | ⊢ ( ( 𝐾  ∈  Ring  ∧  𝐵  ∈  ( Base ‘ 𝐾 ) )  →  𝐵  =  ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 0 ) ) | 
						
							| 265 | 31 87 264 | syl2anc | ⊢ ( 𝜑  →  𝐵  =  ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 0 ) ) | 
						
							| 266 | 265 | eqcomd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 0 )  =  𝐵 ) | 
						
							| 267 | 263 266 | oveq12d | ⊢ ( 𝜑  →  ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 ) ) ‘ 0 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 0 ) )  =  ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) 𝐵 ) ) | 
						
							| 268 | 71 55 58 98 87 | grplidd | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) 𝐵 )  =  𝐵 ) | 
						
							| 269 | 253 267 268 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 0 )  =  𝐵 ) | 
						
							| 270 | 251 269 | oveq12d | ⊢ ( 𝜑  →  ( ( ( coe1 ‘ ( 2  ∧  𝑌 ) ) ‘ 0 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ‘ 0 ) )  =  ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) 𝐵 ) ) | 
						
							| 271 | 248 270 268 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( ( 2  ∧  𝑌 )  ⊕  ( ( ( 𝑈 ‘ 𝐴 )  ⊗  𝑌 )  ⊕  ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 0 )  =  𝐵 ) | 
						
							| 272 | 244 271 | eqtrid | ⊢ ( 𝜑  →  ( ( coe1 ‘ 𝐺 ) ‘ 0 )  =  𝐵 ) | 
						
							| 273 | 243 272 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ( coe1 ‘ 𝐺 ) ‘ 1 )  ·  𝑋 )  +  ( ( coe1 ‘ 𝐺 ) ‘ 0 ) )  =  ( ( 𝐴  ·  𝑋 )  +  𝐵 ) ) | 
						
							| 274 | 206 273 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ( coe1 ‘ 𝐺 ) ‘ 2 )  ·  ( 2  ↑  𝑋 ) )  +  ( ( ( ( coe1 ‘ 𝐺 ) ‘ 1 )  ·  𝑋 )  +  ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) )  =  ( ( 2  ↑  𝑋 )  +  ( ( 𝐴  ·  𝑋 )  +  𝐵 ) ) ) | 
						
							| 275 | 274 14 | eqtrd | ⊢ ( 𝜑  →  ( ( ( ( coe1 ‘ 𝐺 ) ‘ 2 )  ·  ( 2  ↑  𝑋 ) )  +  ( ( ( ( coe1 ‘ 𝐺 ) ‘ 1 )  ·  𝑋 )  +  ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) )  =   0  ) | 
						
							| 276 | 184 198 275 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝐺 ) ‘ 𝑋 )  =   0  ) | 
						
							| 277 | 25 177 276 | rspcedvdw | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  ( Monic1p ‘ 𝐾 ) ( ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝑝 ) ‘ 𝑋 )  =   0  ) | 
						
							| 278 | 178 1 5 3 44 46 | elirng | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐸  IntgRing  𝐹 )  ↔  ( 𝑋  ∈  𝑉  ∧  ∃ 𝑝  ∈  ( Monic1p ‘ 𝐾 ) ( ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝑝 ) ‘ 𝑋 )  =   0  ) ) ) | 
						
							| 279 | 11 277 278 | mpbir2and | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐸  IntgRing  𝐹 ) ) | 
						
							| 280 | 1 2 21 22 9 10 279 | algextdeg | ⊢ ( 𝜑  →  ( 𝐿 [:] 𝐾 )  =  ( ( deg1 ‘ 𝐸 ) ‘ ( ( 𝐸  minPoly  𝐹 ) ‘ 𝑋 ) ) ) | 
						
							| 281 | 1 | fveq2i | ⊢ ( Poly1 ‘ 𝐾 )  =  ( Poly1 ‘ ( 𝐸  ↾s  𝐹 ) ) | 
						
							| 282 | 4 281 | eqtri | ⊢ 𝑃  =  ( Poly1 ‘ ( 𝐸  ↾s  𝐹 ) ) | 
						
							| 283 |  | eqid | ⊢ { 𝑞  ∈  dom  ( 𝐸  evalSub1  𝐹 )  ∣  ( ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝑞 ) ‘ 𝑋 )  =   0  }  =  { 𝑞  ∈  dom  ( 𝐸  evalSub1  𝐹 )  ∣  ( ( ( 𝐸  evalSub1  𝐹 ) ‘ 𝑞 ) ‘ 𝑋 )  =   0  } | 
						
							| 284 |  | eqid | ⊢ ( RSpan ‘ 𝑃 )  =  ( RSpan ‘ 𝑃 ) | 
						
							| 285 |  | eqid | ⊢ ( idlGen1p ‘ ( 𝐸  ↾s  𝐹 ) )  =  ( idlGen1p ‘ ( 𝐸  ↾s  𝐹 ) ) | 
						
							| 286 | 178 282 5 9 10 11 3 283 284 285 22 | minplycl | ⊢ ( 𝜑  →  ( ( 𝐸  minPoly  𝐹 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 287 | 1 21 4 26 286 46 | ressdeg1 | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐸 ) ‘ ( ( 𝐸  minPoly  𝐹 ) ‘ 𝑋 ) )  =  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐸  minPoly  𝐹 ) ‘ 𝑋 ) ) ) | 
						
							| 288 | 280 287 | eqtrd | ⊢ ( 𝜑  →  ( 𝐿 [:] 𝐾 )  =  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐸  minPoly  𝐹 ) ‘ 𝑋 ) ) ) | 
						
							| 289 | 1 | fveq2i | ⊢ ( deg1 ‘ 𝐾 )  =  ( deg1 ‘ ( 𝐸  ↾s  𝐹 ) ) | 
						
							| 290 | 178 282 5 9 10 11 3 22 289 124 26 276 52 136 | minplymindeg | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐸  minPoly  𝐹 ) ‘ 𝑋 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) ) | 
						
							| 291 | 288 290 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝐿 [:] 𝐾 )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) ) | 
						
							| 292 | 291 172 | breqtrd | ⊢ ( 𝜑  →  ( 𝐿 [:] 𝐾 )  ≤  2 ) |