| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rtelextdg2.1 |
⊢ 𝐾 = ( 𝐸 ↾s 𝐹 ) |
| 2 |
|
rtelextdg2.2 |
⊢ 𝐿 = ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝑋 } ) ) ) |
| 3 |
|
rtelextdg2.3 |
⊢ 0 = ( 0g ‘ 𝐸 ) |
| 4 |
|
rtelextdg2.4 |
⊢ 𝑃 = ( Poly1 ‘ 𝐾 ) |
| 5 |
|
rtelextdg2.5 |
⊢ 𝑉 = ( Base ‘ 𝐸 ) |
| 6 |
|
rtelextdg2.6 |
⊢ · = ( .r ‘ 𝐸 ) |
| 7 |
|
rtelextdg2.7 |
⊢ + = ( +g ‘ 𝐸 ) |
| 8 |
|
rtelextdg2.8 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝐸 ) ) |
| 9 |
|
rtelextdg2.9 |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 10 |
|
rtelextdg2.10 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 11 |
|
rtelextdg2.11 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 12 |
|
rtelextdg2.12 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐹 ) |
| 13 |
|
rtelextdg2.13 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐹 ) |
| 14 |
|
rtelextdg2.14 |
⊢ ( 𝜑 → ( ( 2 ↑ 𝑋 ) + ( ( 𝐴 · 𝑋 ) + 𝐵 ) ) = 0 ) |
| 15 |
|
rtelextdg2lem.1 |
⊢ 𝑌 = ( var1 ‘ 𝐾 ) |
| 16 |
|
rtelextdg2lem.2 |
⊢ ⊕ = ( +g ‘ 𝑃 ) |
| 17 |
|
rtelextdg2lem.3 |
⊢ ⊗ = ( .r ‘ 𝑃 ) |
| 18 |
|
rtelextdg2lem.4 |
⊢ ∧ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 19 |
|
rtelextdg2lem.5 |
⊢ 𝑈 = ( algSc ‘ 𝑃 ) |
| 20 |
|
rtelextdg2lem.6 |
⊢ 𝐺 = ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) |
| 21 |
|
eqid |
⊢ ( deg1 ‘ 𝐸 ) = ( deg1 ‘ 𝐸 ) |
| 22 |
|
eqid |
⊢ ( 𝐸 minPoly 𝐹 ) = ( 𝐸 minPoly 𝐹 ) |
| 23 |
|
fveq2 |
⊢ ( 𝑝 = 𝐺 → ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) = ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝐺 ) ) |
| 24 |
23
|
fveq1d |
⊢ ( 𝑝 = 𝐺 → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝑋 ) = ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 25 |
24
|
eqeq1d |
⊢ ( 𝑝 = 𝐺 → ( ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝑋 ) = 0 ↔ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝐺 ) ‘ 𝑋 ) = 0 ) ) |
| 26 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 27 |
|
fldsdrgfld |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 28 |
9 10 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 29 |
28
|
fldcrngd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ CRing ) |
| 30 |
1 29
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
| 31 |
30
|
crngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
| 32 |
4
|
ply1ring |
⊢ ( 𝐾 ∈ Ring → 𝑃 ∈ Ring ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 34 |
33
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 35 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 36 |
35 26
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 37 |
35
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 38 |
33 37
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 39 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
| 41 |
15 4 26
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
| 42 |
31 41
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
| 43 |
36 18 38 40 42
|
mulgnn0cld |
⊢ ( 𝜑 → ( 2 ∧ 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) |
| 44 |
9
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 45 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 46 |
10 45
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 47 |
4 1 19 26 44 46 12
|
ressasclcl |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) |
| 48 |
26 17 33 47 42
|
ringcld |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) |
| 49 |
4 1 19 26 44 46 13
|
ressasclcl |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝐵 ) ∈ ( Base ‘ 𝑃 ) ) |
| 50 |
26 16 34 48 49
|
grpcld |
⊢ ( 𝜑 → ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 51 |
26 16 34 43 50
|
grpcld |
⊢ ( 𝜑 → ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 52 |
20 51
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ 𝑃 ) ) |
| 53 |
20
|
fveq2i |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) |
| 54 |
53
|
fveq1i |
⊢ ( ( coe1 ‘ 𝐺 ) ‘ 2 ) = ( ( coe1 ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 2 ) |
| 55 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
| 56 |
4 26 16 55
|
coe1addfv |
⊢ ( ( ( 𝐾 ∈ Ring ∧ ( 2 ∧ 𝑌 ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ∈ ( Base ‘ 𝑃 ) ) ∧ 2 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 2 ) = ( ( ( coe1 ‘ ( 2 ∧ 𝑌 ) ) ‘ 2 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 2 ) ) ) |
| 57 |
31 43 50 40 56
|
syl31anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 2 ) = ( ( ( coe1 ‘ ( 2 ∧ 𝑌 ) ) ‘ 2 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 2 ) ) ) |
| 58 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
| 59 |
|
eqid |
⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) |
| 60 |
4 15 18 31 40 58 59
|
coe1mon |
⊢ ( 𝜑 → ( coe1 ‘ ( 2 ∧ 𝑌 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 2 , ( 1r ‘ 𝐾 ) , ( 0g ‘ 𝐾 ) ) ) ) |
| 61 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → 𝑖 = 2 ) |
| 62 |
61
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → if ( 𝑖 = 2 , ( 1r ‘ 𝐾 ) , ( 0g ‘ 𝐾 ) ) = ( 1r ‘ 𝐾 ) ) |
| 63 |
|
fvexd |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) ∈ V ) |
| 64 |
60 62 40 63
|
fvmptd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 2 ∧ 𝑌 ) ) ‘ 2 ) = ( 1r ‘ 𝐾 ) ) |
| 65 |
4 26 16 55
|
coe1addfv |
⊢ ( ( ( 𝐾 ∈ Ring ∧ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑈 ‘ 𝐵 ) ∈ ( Base ‘ 𝑃 ) ) ∧ 2 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 2 ) = ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 2 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 2 ) ) ) |
| 66 |
31 48 49 40 65
|
syl31anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 2 ) = ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 2 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 2 ) ) ) |
| 67 |
5
|
sdrgss |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ⊆ 𝑉 ) |
| 68 |
1 5
|
ressbas2 |
⊢ ( 𝐹 ⊆ 𝑉 → 𝐹 = ( Base ‘ 𝐾 ) ) |
| 69 |
10 67 68
|
3syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐾 ) ) |
| 70 |
12 69
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐾 ) ) |
| 71 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 72 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
| 73 |
4 26 71 19 17 72
|
coe1sclmulfv |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝐴 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝑃 ) ) ∧ 2 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 2 ) = ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 2 ) ) ) |
| 74 |
31 70 42 40 73
|
syl121anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 2 ) = ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 2 ) ) ) |
| 75 |
4 15 31 58 59
|
coe1vr1 |
⊢ ( 𝜑 → ( coe1 ‘ 𝑌 ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 1 , ( 1r ‘ 𝐾 ) , ( 0g ‘ 𝐾 ) ) ) ) |
| 76 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 77 |
76
|
nesymi |
⊢ ¬ 2 = 1 |
| 78 |
|
eqeq1 |
⊢ ( 𝑖 = 2 → ( 𝑖 = 1 ↔ 2 = 1 ) ) |
| 79 |
77 78
|
mtbiri |
⊢ ( 𝑖 = 2 → ¬ 𝑖 = 1 ) |
| 80 |
79
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → ¬ 𝑖 = 1 ) |
| 81 |
80
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → if ( 𝑖 = 1 , ( 1r ‘ 𝐾 ) , ( 0g ‘ 𝐾 ) ) = ( 0g ‘ 𝐾 ) ) |
| 82 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) ∈ V ) |
| 83 |
75 81 40 82
|
fvmptd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝑌 ) ‘ 2 ) = ( 0g ‘ 𝐾 ) ) |
| 84 |
83
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 2 ) ) = ( 𝐴 ( .r ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) |
| 85 |
71 72 58 31 70
|
ringrzd |
⊢ ( 𝜑 → ( 𝐴 ( .r ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) = ( 0g ‘ 𝐾 ) ) |
| 86 |
74 84 85
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 2 ) = ( 0g ‘ 𝐾 ) ) |
| 87 |
13 69
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ 𝐾 ) ) |
| 88 |
4 19 71 58
|
coe1scl |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐵 ∈ ( Base ‘ 𝐾 ) ) → ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , 𝐵 , ( 0g ‘ 𝐾 ) ) ) ) |
| 89 |
31 87 88
|
syl2anc |
⊢ ( 𝜑 → ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , 𝐵 , ( 0g ‘ 𝐾 ) ) ) ) |
| 90 |
|
0ne2 |
⊢ 0 ≠ 2 |
| 91 |
90
|
neii |
⊢ ¬ 0 = 2 |
| 92 |
|
eqeq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 = 2 ↔ 0 = 2 ) ) |
| 93 |
91 92
|
mtbiri |
⊢ ( 𝑖 = 0 → ¬ 𝑖 = 2 ) |
| 94 |
93 61
|
nsyl3 |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → ¬ 𝑖 = 0 ) |
| 95 |
94
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → if ( 𝑖 = 0 , 𝐵 , ( 0g ‘ 𝐾 ) ) = ( 0g ‘ 𝐾 ) ) |
| 96 |
89 95 40 82
|
fvmptd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 2 ) = ( 0g ‘ 𝐾 ) ) |
| 97 |
86 96
|
oveq12d |
⊢ ( 𝜑 → ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 2 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 2 ) ) = ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) |
| 98 |
31
|
ringgrpd |
⊢ ( 𝜑 → 𝐾 ∈ Grp ) |
| 99 |
71 58
|
grpidcl |
⊢ ( 𝐾 ∈ Grp → ( 0g ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 100 |
98 99
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 101 |
71 55 58 98 100
|
grpridd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) = ( 0g ‘ 𝐾 ) ) |
| 102 |
66 97 101
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 2 ) = ( 0g ‘ 𝐾 ) ) |
| 103 |
64 102
|
oveq12d |
⊢ ( 𝜑 → ( ( ( coe1 ‘ ( 2 ∧ 𝑌 ) ) ‘ 2 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 2 ) ) = ( ( 1r ‘ 𝐾 ) ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) |
| 104 |
71 59
|
ringidcl |
⊢ ( 𝐾 ∈ Ring → ( 1r ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 105 |
31 104
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 106 |
71 55 58 98 105
|
grpridd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐾 ) ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) = ( 1r ‘ 𝐾 ) ) |
| 107 |
44
|
crngringd |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
| 108 |
|
eqid |
⊢ ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐸 ) |
| 109 |
108
|
subrg1cl |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → ( 1r ‘ 𝐸 ) ∈ 𝐹 ) |
| 110 |
46 109
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐸 ) ∈ 𝐹 ) |
| 111 |
10 67
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ 𝑉 ) |
| 112 |
1 5 108
|
ress1r |
⊢ ( ( 𝐸 ∈ Ring ∧ ( 1r ‘ 𝐸 ) ∈ 𝐹 ∧ 𝐹 ⊆ 𝑉 ) → ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐾 ) ) |
| 113 |
107 110 111 112
|
syl3anc |
⊢ ( 𝜑 → ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐾 ) ) |
| 114 |
106 113
|
eqtr4d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐾 ) ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) = ( 1r ‘ 𝐸 ) ) |
| 115 |
57 103 114
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 2 ) = ( 1r ‘ 𝐸 ) ) |
| 116 |
54 115
|
eqtrid |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ 2 ) = ( 1r ‘ 𝐸 ) ) |
| 117 |
9
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
| 118 |
|
drngnzr |
⊢ ( 𝐸 ∈ DivRing → 𝐸 ∈ NzRing ) |
| 119 |
108 3
|
nzrnz |
⊢ ( 𝐸 ∈ NzRing → ( 1r ‘ 𝐸 ) ≠ 0 ) |
| 120 |
117 118 119
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐸 ) ≠ 0 ) |
| 121 |
116 120
|
eqnetrd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ 2 ) ≠ 0 ) |
| 122 |
|
fveq2 |
⊢ ( 𝐺 = ( 0g ‘ 𝑃 ) → ( coe1 ‘ 𝐺 ) = ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) |
| 123 |
122
|
fveq1d |
⊢ ( 𝐺 = ( 0g ‘ 𝑃 ) → ( ( coe1 ‘ 𝐺 ) ‘ 2 ) = ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 2 ) ) |
| 124 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 125 |
4 124 58 31 40
|
coe1zfv |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 2 ) = ( 0g ‘ 𝐾 ) ) |
| 126 |
107
|
ringgrpd |
⊢ ( 𝜑 → 𝐸 ∈ Grp ) |
| 127 |
126
|
grpmndd |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
| 128 |
|
subrgsubg |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → 𝐹 ∈ ( SubGrp ‘ 𝐸 ) ) |
| 129 |
46 128
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubGrp ‘ 𝐸 ) ) |
| 130 |
3
|
subg0cl |
⊢ ( 𝐹 ∈ ( SubGrp ‘ 𝐸 ) → 0 ∈ 𝐹 ) |
| 131 |
129 130
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐹 ) |
| 132 |
1 5 3
|
ress0g |
⊢ ( ( 𝐸 ∈ Mnd ∧ 0 ∈ 𝐹 ∧ 𝐹 ⊆ 𝑉 ) → 0 = ( 0g ‘ 𝐾 ) ) |
| 133 |
127 131 111 132
|
syl3anc |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐾 ) ) |
| 134 |
125 133
|
eqtr4d |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 2 ) = 0 ) |
| 135 |
123 134
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐺 = ( 0g ‘ 𝑃 ) ) → ( ( coe1 ‘ 𝐺 ) ‘ 2 ) = 0 ) |
| 136 |
121 135
|
mteqand |
⊢ ( 𝜑 → 𝐺 ≠ ( 0g ‘ 𝑃 ) ) |
| 137 |
20
|
fveq2i |
⊢ ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) = ( ( deg1 ‘ 𝐾 ) ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) |
| 138 |
|
eqid |
⊢ ( deg1 ‘ 𝐾 ) = ( deg1 ‘ 𝐾 ) |
| 139 |
|
2re |
⊢ 2 ∈ ℝ |
| 140 |
139
|
rexri |
⊢ 2 ∈ ℝ* |
| 141 |
140
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ* ) |
| 142 |
138 4 26
|
deg1xrcl |
⊢ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ∈ ( Base ‘ 𝑃 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ∈ ℝ* ) |
| 143 |
48 142
|
syl |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ∈ ℝ* ) |
| 144 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 145 |
144
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ* ) |
| 146 |
138 4 71 26 17 19
|
deg1mul3le |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐴 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝑃 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ 𝑌 ) ) |
| 147 |
31 70 42 146
|
syl3anc |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ 𝑌 ) ) |
| 148 |
1 28
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 149 |
148
|
flddrngd |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
| 150 |
|
drngnzr |
⊢ ( 𝐾 ∈ DivRing → 𝐾 ∈ NzRing ) |
| 151 |
149 150
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ NzRing ) |
| 152 |
138 4 15 151
|
deg1vr |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑌 ) = 1 ) |
| 153 |
147 152
|
breqtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ≤ 1 ) |
| 154 |
|
1lt2 |
⊢ 1 < 2 |
| 155 |
154
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 156 |
143 145 141 153 155
|
xrlelttrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) < 2 ) |
| 157 |
138 4 26
|
deg1xrcl |
⊢ ( ( 𝑈 ‘ 𝐵 ) ∈ ( Base ‘ 𝑃 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑈 ‘ 𝐵 ) ) ∈ ℝ* ) |
| 158 |
49 157
|
syl |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑈 ‘ 𝐵 ) ) ∈ ℝ* ) |
| 159 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 160 |
159
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
| 161 |
138 4 71 19
|
deg1sclle |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐵 ∈ ( Base ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑈 ‘ 𝐵 ) ) ≤ 0 ) |
| 162 |
31 87 161
|
syl2anc |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑈 ‘ 𝐵 ) ) ≤ 0 ) |
| 163 |
|
2pos |
⊢ 0 < 2 |
| 164 |
163
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 165 |
158 160 141 162 164
|
xrlelttrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑈 ‘ 𝐵 ) ) < 2 ) |
| 166 |
4 138 31 26 16 48 49 141 156 165
|
deg1addlt |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) < 2 ) |
| 167 |
138 4 15 35 18
|
deg1pw |
⊢ ( ( 𝐾 ∈ NzRing ∧ 2 ∈ ℕ0 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 2 ∧ 𝑌 ) ) = 2 ) |
| 168 |
151 40 167
|
syl2anc |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 2 ∧ 𝑌 ) ) = 2 ) |
| 169 |
166 168
|
breqtrrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 2 ∧ 𝑌 ) ) ) |
| 170 |
4 138 31 26 16 43 50 169
|
deg1add |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( 2 ∧ 𝑌 ) ) ) |
| 171 |
170 168
|
eqtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) = 2 ) |
| 172 |
137 171
|
eqtrid |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) = 2 ) |
| 173 |
172
|
fveq2d |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) ) = ( ( coe1 ‘ 𝐺 ) ‘ 2 ) ) |
| 174 |
173 116 113
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) ) = ( 1r ‘ 𝐾 ) ) |
| 175 |
|
eqid |
⊢ ( Monic1p ‘ 𝐾 ) = ( Monic1p ‘ 𝐾 ) |
| 176 |
4 26 124 138 175 59
|
ismon1p |
⊢ ( 𝐺 ∈ ( Monic1p ‘ 𝐾 ) ↔ ( 𝐺 ∈ ( Base ‘ 𝑃 ) ∧ 𝐺 ≠ ( 0g ‘ 𝑃 ) ∧ ( ( coe1 ‘ 𝐺 ) ‘ ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) ) = ( 1r ‘ 𝐾 ) ) ) |
| 177 |
52 136 174 176
|
syl3anbrc |
⊢ ( 𝜑 → 𝐺 ∈ ( Monic1p ‘ 𝐾 ) ) |
| 178 |
|
eqid |
⊢ ( 𝐸 evalSub1 𝐹 ) = ( 𝐸 evalSub1 𝐹 ) |
| 179 |
|
eqid |
⊢ ( eval1 ‘ 𝐸 ) = ( eval1 ‘ 𝐸 ) |
| 180 |
178 5 4 1 26 179 44 46
|
ressply1evl |
⊢ ( 𝜑 → ( 𝐸 evalSub1 𝐹 ) = ( ( eval1 ‘ 𝐸 ) ↾ ( Base ‘ 𝑃 ) ) ) |
| 181 |
180
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝐺 ) = ( ( ( eval1 ‘ 𝐸 ) ↾ ( Base ‘ 𝑃 ) ) ‘ 𝐺 ) ) |
| 182 |
52
|
fvresd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐸 ) ↾ ( Base ‘ 𝑃 ) ) ‘ 𝐺 ) = ( ( eval1 ‘ 𝐸 ) ‘ 𝐺 ) ) |
| 183 |
181 182
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝐺 ) = ( ( eval1 ‘ 𝐸 ) ‘ 𝐺 ) ) |
| 184 |
183
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝐺 ) ‘ 𝑋 ) = ( ( ( eval1 ‘ 𝐸 ) ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 185 |
|
eqid |
⊢ ( Poly1 ‘ 𝐸 ) = ( Poly1 ‘ 𝐸 ) |
| 186 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) = ( Base ‘ ( Poly1 ‘ 𝐸 ) ) |
| 187 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
| 188 |
|
eqid |
⊢ ( ( coe1 ‘ 𝐺 ) ‘ 2 ) = ( ( coe1 ‘ 𝐺 ) ‘ 2 ) |
| 189 |
|
eqid |
⊢ ( ( coe1 ‘ 𝐺 ) ‘ 1 ) = ( ( coe1 ‘ 𝐺 ) ‘ 1 ) |
| 190 |
|
eqid |
⊢ ( ( coe1 ‘ 𝐺 ) ‘ 0 ) = ( ( coe1 ‘ 𝐺 ) ‘ 0 ) |
| 191 |
|
eqid |
⊢ ( PwSer1 ‘ 𝐾 ) = ( PwSer1 ‘ 𝐾 ) |
| 192 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) = ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) |
| 193 |
185 1 4 26 46 191 192 186
|
ressply1bas2 |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) = ( ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) ) |
| 194 |
52 193
|
eleqtrd |
⊢ ( 𝜑 → 𝐺 ∈ ( ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) ) |
| 195 |
194
|
elin2d |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) |
| 196 |
1 21 4 26 52 46
|
ressdeg1 |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐸 ) ‘ 𝐺 ) = ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) ) |
| 197 |
196 172
|
eqtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐸 ) ‘ 𝐺 ) = 2 ) |
| 198 |
185 179 5 186 6 7 8 187 21 188 189 190 44 195 197 11
|
evl1deg2 |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐸 ) ‘ 𝐺 ) ‘ 𝑋 ) = ( ( ( ( coe1 ‘ 𝐺 ) ‘ 2 ) · ( 2 ↑ 𝑋 ) ) + ( ( ( ( coe1 ‘ 𝐺 ) ‘ 1 ) · 𝑋 ) + ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) ) ) |
| 199 |
116
|
oveq1d |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐺 ) ‘ 2 ) · ( 2 ↑ 𝑋 ) ) = ( ( 1r ‘ 𝐸 ) · ( 2 ↑ 𝑋 ) ) ) |
| 200 |
|
eqid |
⊢ ( mulGrp ‘ 𝐸 ) = ( mulGrp ‘ 𝐸 ) |
| 201 |
200 5
|
mgpbas |
⊢ 𝑉 = ( Base ‘ ( mulGrp ‘ 𝐸 ) ) |
| 202 |
200
|
ringmgp |
⊢ ( 𝐸 ∈ Ring → ( mulGrp ‘ 𝐸 ) ∈ Mnd ) |
| 203 |
107 202
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐸 ) ∈ Mnd ) |
| 204 |
201 8 203 40 11
|
mulgnn0cld |
⊢ ( 𝜑 → ( 2 ↑ 𝑋 ) ∈ 𝑉 ) |
| 205 |
5 6 108 107 204
|
ringlidmd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐸 ) · ( 2 ↑ 𝑋 ) ) = ( 2 ↑ 𝑋 ) ) |
| 206 |
199 205
|
eqtrd |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐺 ) ‘ 2 ) · ( 2 ↑ 𝑋 ) ) = ( 2 ↑ 𝑋 ) ) |
| 207 |
53
|
fveq1i |
⊢ ( ( coe1 ‘ 𝐺 ) ‘ 1 ) = ( ( coe1 ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 1 ) |
| 208 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 209 |
208
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 210 |
4 26 16 55
|
coe1addfv |
⊢ ( ( ( 𝐾 ∈ Ring ∧ ( 2 ∧ 𝑌 ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ∈ ( Base ‘ 𝑃 ) ) ∧ 1 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 1 ) = ( ( ( coe1 ‘ ( 2 ∧ 𝑌 ) ) ‘ 1 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 1 ) ) ) |
| 211 |
31 43 50 209 210
|
syl31anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 1 ) = ( ( ( coe1 ‘ ( 2 ∧ 𝑌 ) ) ‘ 1 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 1 ) ) ) |
| 212 |
76
|
neii |
⊢ ¬ 1 = 2 |
| 213 |
|
eqeq1 |
⊢ ( 𝑖 = 1 → ( 𝑖 = 2 ↔ 1 = 2 ) ) |
| 214 |
213
|
notbid |
⊢ ( 𝑖 = 1 → ( ¬ 𝑖 = 2 ↔ ¬ 1 = 2 ) ) |
| 215 |
214
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → ( ¬ 𝑖 = 2 ↔ ¬ 1 = 2 ) ) |
| 216 |
212 215
|
mpbiri |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → ¬ 𝑖 = 2 ) |
| 217 |
216
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → if ( 𝑖 = 2 , ( 1r ‘ 𝐾 ) , ( 0g ‘ 𝐾 ) ) = ( 0g ‘ 𝐾 ) ) |
| 218 |
60 217 209 82
|
fvmptd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 2 ∧ 𝑌 ) ) ‘ 1 ) = ( 0g ‘ 𝐾 ) ) |
| 219 |
4 26 16 55
|
coe1addfv |
⊢ ( ( ( 𝐾 ∈ Ring ∧ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑈 ‘ 𝐵 ) ∈ ( Base ‘ 𝑃 ) ) ∧ 1 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 1 ) = ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 1 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 1 ) ) ) |
| 220 |
31 48 49 209 219
|
syl31anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 1 ) = ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 1 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 1 ) ) ) |
| 221 |
4 26 71 19 17 72
|
coe1sclmulfv |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝐴 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝑃 ) ) ∧ 1 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 1 ) = ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 1 ) ) ) |
| 222 |
31 70 42 209 221
|
syl121anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 1 ) = ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 1 ) ) ) |
| 223 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → 𝑖 = 1 ) |
| 224 |
223
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → if ( 𝑖 = 1 , ( 1r ‘ 𝐾 ) , ( 0g ‘ 𝐾 ) ) = ( 1r ‘ 𝐾 ) ) |
| 225 |
75 224 209 63
|
fvmptd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝑌 ) ‘ 1 ) = ( 1r ‘ 𝐾 ) ) |
| 226 |
225
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 1 ) ) = ( 𝐴 ( .r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) |
| 227 |
71 72 59 31 70
|
ringridmd |
⊢ ( 𝜑 → ( 𝐴 ( .r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) = 𝐴 ) |
| 228 |
222 226 227
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 1 ) = 𝐴 ) |
| 229 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 230 |
229
|
nesymi |
⊢ ¬ 1 = 0 |
| 231 |
|
eqeq1 |
⊢ ( 𝑖 = 1 → ( 𝑖 = 0 ↔ 1 = 0 ) ) |
| 232 |
230 231
|
mtbiri |
⊢ ( 𝑖 = 1 → ¬ 𝑖 = 0 ) |
| 233 |
232
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → ¬ 𝑖 = 0 ) |
| 234 |
233
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → if ( 𝑖 = 0 , 𝐵 , ( 0g ‘ 𝐾 ) ) = ( 0g ‘ 𝐾 ) ) |
| 235 |
89 234 209 82
|
fvmptd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 1 ) = ( 0g ‘ 𝐾 ) ) |
| 236 |
228 235
|
oveq12d |
⊢ ( 𝜑 → ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 1 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 1 ) ) = ( 𝐴 ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) |
| 237 |
71 55 58 98 70
|
grpridd |
⊢ ( 𝜑 → ( 𝐴 ( +g ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) = 𝐴 ) |
| 238 |
220 236 237
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 1 ) = 𝐴 ) |
| 239 |
218 238
|
oveq12d |
⊢ ( 𝜑 → ( ( ( coe1 ‘ ( 2 ∧ 𝑌 ) ) ‘ 1 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 1 ) ) = ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) 𝐴 ) ) |
| 240 |
71 55 58 98 70
|
grplidd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) 𝐴 ) = 𝐴 ) |
| 241 |
211 239 240
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 1 ) = 𝐴 ) |
| 242 |
207 241
|
eqtrid |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ 1 ) = 𝐴 ) |
| 243 |
242
|
oveq1d |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐺 ) ‘ 1 ) · 𝑋 ) = ( 𝐴 · 𝑋 ) ) |
| 244 |
53
|
fveq1i |
⊢ ( ( coe1 ‘ 𝐺 ) ‘ 0 ) = ( ( coe1 ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 0 ) |
| 245 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 246 |
245
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 247 |
4 26 16 55
|
coe1addfv |
⊢ ( ( ( 𝐾 ∈ Ring ∧ ( 2 ∧ 𝑌 ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ∈ ( Base ‘ 𝑃 ) ) ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 0 ) = ( ( ( coe1 ‘ ( 2 ∧ 𝑌 ) ) ‘ 0 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 0 ) ) ) |
| 248 |
31 43 50 246 247
|
syl31anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 0 ) = ( ( ( coe1 ‘ ( 2 ∧ 𝑌 ) ) ‘ 0 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 0 ) ) ) |
| 249 |
93
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ¬ 𝑖 = 2 ) |
| 250 |
249
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → if ( 𝑖 = 2 , ( 1r ‘ 𝐾 ) , ( 0g ‘ 𝐾 ) ) = ( 0g ‘ 𝐾 ) ) |
| 251 |
60 250 246 82
|
fvmptd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 2 ∧ 𝑌 ) ) ‘ 0 ) = ( 0g ‘ 𝐾 ) ) |
| 252 |
4 26 16 55
|
coe1addfv |
⊢ ( ( ( 𝐾 ∈ Ring ∧ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑈 ‘ 𝐵 ) ∈ ( Base ‘ 𝑃 ) ) ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 0 ) = ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 0 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 0 ) ) ) |
| 253 |
31 48 49 246 252
|
syl31anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 0 ) = ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 0 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 0 ) ) ) |
| 254 |
4 26 71 19 17 72
|
coe1sclmulfv |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝐴 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝑃 ) ) ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 0 ) = ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 0 ) ) ) |
| 255 |
31 70 42 246 254
|
syl121anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 0 ) = ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 0 ) ) ) |
| 256 |
229
|
neii |
⊢ ¬ 0 = 1 |
| 257 |
|
eqeq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 = 1 ↔ 0 = 1 ) ) |
| 258 |
256 257
|
mtbiri |
⊢ ( 𝑖 = 0 → ¬ 𝑖 = 1 ) |
| 259 |
258
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ¬ 𝑖 = 1 ) |
| 260 |
259
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → if ( 𝑖 = 1 , ( 1r ‘ 𝐾 ) , ( 0g ‘ 𝐾 ) ) = ( 0g ‘ 𝐾 ) ) |
| 261 |
75 260 246 82
|
fvmptd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝑌 ) ‘ 0 ) = ( 0g ‘ 𝐾 ) ) |
| 262 |
261
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ( .r ‘ 𝐾 ) ( ( coe1 ‘ 𝑌 ) ‘ 0 ) ) = ( 𝐴 ( .r ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) |
| 263 |
255 262 85
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 0 ) = ( 0g ‘ 𝐾 ) ) |
| 264 |
4 19 71
|
ply1sclid |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝐵 ∈ ( Base ‘ 𝐾 ) ) → 𝐵 = ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 0 ) ) |
| 265 |
31 87 264
|
syl2anc |
⊢ ( 𝜑 → 𝐵 = ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 0 ) ) |
| 266 |
265
|
eqcomd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 0 ) = 𝐵 ) |
| 267 |
263 266
|
oveq12d |
⊢ ( 𝜑 → ( ( ( coe1 ‘ ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ) ‘ 0 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( 𝑈 ‘ 𝐵 ) ) ‘ 0 ) ) = ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) 𝐵 ) ) |
| 268 |
71 55 58 98 87
|
grplidd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) 𝐵 ) = 𝐵 ) |
| 269 |
253 267 268
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 0 ) = 𝐵 ) |
| 270 |
251 269
|
oveq12d |
⊢ ( 𝜑 → ( ( ( coe1 ‘ ( 2 ∧ 𝑌 ) ) ‘ 0 ) ( +g ‘ 𝐾 ) ( ( coe1 ‘ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ‘ 0 ) ) = ( ( 0g ‘ 𝐾 ) ( +g ‘ 𝐾 ) 𝐵 ) ) |
| 271 |
248 270 268
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 2 ∧ 𝑌 ) ⊕ ( ( ( 𝑈 ‘ 𝐴 ) ⊗ 𝑌 ) ⊕ ( 𝑈 ‘ 𝐵 ) ) ) ) ‘ 0 ) = 𝐵 ) |
| 272 |
244 271
|
eqtrid |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ 0 ) = 𝐵 ) |
| 273 |
243 272
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( coe1 ‘ 𝐺 ) ‘ 1 ) · 𝑋 ) + ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) = ( ( 𝐴 · 𝑋 ) + 𝐵 ) ) |
| 274 |
206 273
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( coe1 ‘ 𝐺 ) ‘ 2 ) · ( 2 ↑ 𝑋 ) ) + ( ( ( ( coe1 ‘ 𝐺 ) ‘ 1 ) · 𝑋 ) + ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) ) = ( ( 2 ↑ 𝑋 ) + ( ( 𝐴 · 𝑋 ) + 𝐵 ) ) ) |
| 275 |
274 14
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( coe1 ‘ 𝐺 ) ‘ 2 ) · ( 2 ↑ 𝑋 ) ) + ( ( ( ( coe1 ‘ 𝐺 ) ‘ 1 ) · 𝑋 ) + ( ( coe1 ‘ 𝐺 ) ‘ 0 ) ) ) = 0 ) |
| 276 |
184 198 275
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝐺 ) ‘ 𝑋 ) = 0 ) |
| 277 |
25 177 276
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( Monic1p ‘ 𝐾 ) ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝑋 ) = 0 ) |
| 278 |
178 1 5 3 44 46
|
elirng |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐸 IntgRing 𝐹 ) ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑝 ∈ ( Monic1p ‘ 𝐾 ) ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝑋 ) = 0 ) ) ) |
| 279 |
11 277 278
|
mpbir2and |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 280 |
1 2 21 22 9 10 279
|
algextdeg |
⊢ ( 𝜑 → ( 𝐿 [:] 𝐾 ) = ( ( deg1 ‘ 𝐸 ) ‘ ( ( 𝐸 minPoly 𝐹 ) ‘ 𝑋 ) ) ) |
| 281 |
1
|
fveq2i |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 282 |
4 281
|
eqtri |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 283 |
|
eqid |
⊢ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝑋 ) = 0 } = { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝑋 ) = 0 } |
| 284 |
|
eqid |
⊢ ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 ) |
| 285 |
|
eqid |
⊢ ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 286 |
178 282 5 9 10 11 3 283 284 285 22
|
minplycl |
⊢ ( 𝜑 → ( ( 𝐸 minPoly 𝐹 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 287 |
1 21 4 26 286 46
|
ressdeg1 |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐸 ) ‘ ( ( 𝐸 minPoly 𝐹 ) ‘ 𝑋 ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐸 minPoly 𝐹 ) ‘ 𝑋 ) ) ) |
| 288 |
280 287
|
eqtrd |
⊢ ( 𝜑 → ( 𝐿 [:] 𝐾 ) = ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐸 minPoly 𝐹 ) ‘ 𝑋 ) ) ) |
| 289 |
1
|
fveq2i |
⊢ ( deg1 ‘ 𝐾 ) = ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 290 |
178 282 5 9 10 11 3 22 289 124 26 276 52 136
|
minplymindeg |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐸 minPoly 𝐹 ) ‘ 𝑋 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) ) |
| 291 |
288 290
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐿 [:] 𝐾 ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ 𝐺 ) ) |
| 292 |
291 172
|
breqtrd |
⊢ ( 𝜑 → ( 𝐿 [:] 𝐾 ) ≤ 2 ) |