Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenfldext.b |
|- B = ( Base ` E ) |
2 |
|
fldgenfldext.k |
|- K = ( E |`s F ) |
3 |
|
fldgenfldext.l |
|- L = ( E |`s ( E fldGen ( F u. A ) ) ) |
4 |
|
fldgenfldext.e |
|- ( ph -> E e. Field ) |
5 |
|
fldgenfldext.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
6 |
|
fldgenfldext.1 |
|- ( ph -> A C_ B ) |
7 |
1
|
sdrgss |
|- ( F e. ( SubDRing ` E ) -> F C_ B ) |
8 |
5 7
|
syl |
|- ( ph -> F C_ B ) |
9 |
8 6
|
unssd |
|- ( ph -> ( F u. A ) C_ B ) |
10 |
1 4 9
|
fldgenfld |
|- ( ph -> ( E |`s ( E fldGen ( F u. A ) ) ) e. Field ) |
11 |
3 10
|
eqeltrid |
|- ( ph -> L e. Field ) |
12 |
|
fldsdrgfld |
|- ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field ) |
13 |
4 5 12
|
syl2anc |
|- ( ph -> ( E |`s F ) e. Field ) |
14 |
2 13
|
eqeltrid |
|- ( ph -> K e. Field ) |
15 |
3
|
oveq1i |
|- ( L |`s F ) = ( ( E |`s ( E fldGen ( F u. A ) ) ) |`s F ) |
16 |
|
ovexd |
|- ( ph -> ( E fldGen ( F u. A ) ) e. _V ) |
17 |
|
ressress |
|- ( ( ( E fldGen ( F u. A ) ) e. _V /\ F e. ( SubDRing ` E ) ) -> ( ( E |`s ( E fldGen ( F u. A ) ) ) |`s F ) = ( E |`s ( ( E fldGen ( F u. A ) ) i^i F ) ) ) |
18 |
16 5 17
|
syl2anc |
|- ( ph -> ( ( E |`s ( E fldGen ( F u. A ) ) ) |`s F ) = ( E |`s ( ( E fldGen ( F u. A ) ) i^i F ) ) ) |
19 |
15 18
|
eqtrid |
|- ( ph -> ( L |`s F ) = ( E |`s ( ( E fldGen ( F u. A ) ) i^i F ) ) ) |
20 |
4
|
flddrngd |
|- ( ph -> E e. DivRing ) |
21 |
1 20 9
|
fldgenssid |
|- ( ph -> ( F u. A ) C_ ( E fldGen ( F u. A ) ) ) |
22 |
21
|
unssad |
|- ( ph -> F C_ ( E fldGen ( F u. A ) ) ) |
23 |
|
sseqin2 |
|- ( F C_ ( E fldGen ( F u. A ) ) <-> ( ( E fldGen ( F u. A ) ) i^i F ) = F ) |
24 |
22 23
|
sylib |
|- ( ph -> ( ( E fldGen ( F u. A ) ) i^i F ) = F ) |
25 |
24
|
oveq2d |
|- ( ph -> ( E |`s ( ( E fldGen ( F u. A ) ) i^i F ) ) = ( E |`s F ) ) |
26 |
19 25
|
eqtrd |
|- ( ph -> ( L |`s F ) = ( E |`s F ) ) |
27 |
2 1
|
ressbas2 |
|- ( F C_ B -> F = ( Base ` K ) ) |
28 |
8 27
|
syl |
|- ( ph -> F = ( Base ` K ) ) |
29 |
28
|
oveq2d |
|- ( ph -> ( L |`s F ) = ( L |`s ( Base ` K ) ) ) |
30 |
26 29
|
eqtr3d |
|- ( ph -> ( E |`s F ) = ( L |`s ( Base ` K ) ) ) |
31 |
2 30
|
eqtrid |
|- ( ph -> K = ( L |`s ( Base ` K ) ) ) |
32 |
11
|
fldcrngd |
|- ( ph -> L e. CRing ) |
33 |
32
|
crngringd |
|- ( ph -> L e. Ring ) |
34 |
14
|
fldcrngd |
|- ( ph -> K e. CRing ) |
35 |
34
|
crngringd |
|- ( ph -> K e. Ring ) |
36 |
2 35
|
eqeltrrid |
|- ( ph -> ( E |`s F ) e. Ring ) |
37 |
26 36
|
eqeltrd |
|- ( ph -> ( L |`s F ) e. Ring ) |
38 |
1 20 9
|
fldgenssv |
|- ( ph -> ( E fldGen ( F u. A ) ) C_ B ) |
39 |
3 1
|
ressbas2 |
|- ( ( E fldGen ( F u. A ) ) C_ B -> ( E fldGen ( F u. A ) ) = ( Base ` L ) ) |
40 |
38 39
|
syl |
|- ( ph -> ( E fldGen ( F u. A ) ) = ( Base ` L ) ) |
41 |
22 40
|
sseqtrd |
|- ( ph -> F C_ ( Base ` L ) ) |
42 |
20
|
drngringd |
|- ( ph -> E e. Ring ) |
43 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
44 |
|
eqid |
|- ( 1r ` E ) = ( 1r ` E ) |
45 |
44
|
subrg1cl |
|- ( F e. ( SubRing ` E ) -> ( 1r ` E ) e. F ) |
46 |
5 43 45
|
3syl |
|- ( ph -> ( 1r ` E ) e. F ) |
47 |
22 46
|
sseldd |
|- ( ph -> ( 1r ` E ) e. ( E fldGen ( F u. A ) ) ) |
48 |
3 1 44
|
ress1r |
|- ( ( E e. Ring /\ ( 1r ` E ) e. ( E fldGen ( F u. A ) ) /\ ( E fldGen ( F u. A ) ) C_ B ) -> ( 1r ` E ) = ( 1r ` L ) ) |
49 |
42 47 38 48
|
syl3anc |
|- ( ph -> ( 1r ` E ) = ( 1r ` L ) ) |
50 |
49 46
|
eqeltrrd |
|- ( ph -> ( 1r ` L ) e. F ) |
51 |
41 50
|
jca |
|- ( ph -> ( F C_ ( Base ` L ) /\ ( 1r ` L ) e. F ) ) |
52 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
53 |
|
eqid |
|- ( 1r ` L ) = ( 1r ` L ) |
54 |
52 53
|
issubrg |
|- ( F e. ( SubRing ` L ) <-> ( ( L e. Ring /\ ( L |`s F ) e. Ring ) /\ ( F C_ ( Base ` L ) /\ ( 1r ` L ) e. F ) ) ) |
55 |
33 37 51 54
|
syl21anbrc |
|- ( ph -> F e. ( SubRing ` L ) ) |
56 |
28 55
|
eqeltrrd |
|- ( ph -> ( Base ` K ) e. ( SubRing ` L ) ) |
57 |
|
brfldext |
|- ( ( L e. Field /\ K e. Field ) -> ( L /FldExt K <-> ( K = ( L |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` L ) ) ) ) |
58 |
57
|
biimpar |
|- ( ( ( L e. Field /\ K e. Field ) /\ ( K = ( L |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` L ) ) ) -> L /FldExt K ) |
59 |
11 14 31 56 58
|
syl22anc |
|- ( ph -> L /FldExt K ) |