Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenfldext.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
2 |
|
fldgenfldext.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝐹 ) |
3 |
|
fldgenfldext.l |
⊢ 𝐿 = ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ) |
4 |
|
fldgenfldext.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
5 |
|
fldgenfldext.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
6 |
|
fldgenfldext.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
7 |
1
|
sdrgss |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ⊆ 𝐵 ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
9 |
8 6
|
unssd |
⊢ ( 𝜑 → ( 𝐹 ∪ 𝐴 ) ⊆ 𝐵 ) |
10 |
1 4 9
|
fldgenfld |
⊢ ( 𝜑 → ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ) ∈ Field ) |
11 |
3 10
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ Field ) |
12 |
|
fldsdrgfld |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
13 |
4 5 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
14 |
2 13
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
15 |
3
|
oveq1i |
⊢ ( 𝐿 ↾s 𝐹 ) = ( ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ) ↾s 𝐹 ) |
16 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ∈ V ) |
17 |
|
ressress |
⊢ ( ( ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ∈ V ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ) ↾s 𝐹 ) = ( 𝐸 ↾s ( ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ∩ 𝐹 ) ) ) |
18 |
16 5 17
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ) ↾s 𝐹 ) = ( 𝐸 ↾s ( ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ∩ 𝐹 ) ) ) |
19 |
15 18
|
eqtrid |
⊢ ( 𝜑 → ( 𝐿 ↾s 𝐹 ) = ( 𝐸 ↾s ( ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ∩ 𝐹 ) ) ) |
20 |
4
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
21 |
1 20 9
|
fldgenssid |
⊢ ( 𝜑 → ( 𝐹 ∪ 𝐴 ) ⊆ ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ) |
22 |
21
|
unssad |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ) |
23 |
|
sseqin2 |
⊢ ( 𝐹 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ↔ ( ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ∩ 𝐹 ) = 𝐹 ) |
24 |
22 23
|
sylib |
⊢ ( 𝜑 → ( ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ∩ 𝐹 ) = 𝐹 ) |
25 |
24
|
oveq2d |
⊢ ( 𝜑 → ( 𝐸 ↾s ( ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ∩ 𝐹 ) ) = ( 𝐸 ↾s 𝐹 ) ) |
26 |
19 25
|
eqtrd |
⊢ ( 𝜑 → ( 𝐿 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) ) |
27 |
2 1
|
ressbas2 |
⊢ ( 𝐹 ⊆ 𝐵 → 𝐹 = ( Base ‘ 𝐾 ) ) |
28 |
8 27
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐾 ) ) |
29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( 𝐿 ↾s 𝐹 ) = ( 𝐿 ↾s ( Base ‘ 𝐾 ) ) ) |
30 |
26 29
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) = ( 𝐿 ↾s ( Base ‘ 𝐾 ) ) ) |
31 |
2 30
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( 𝐿 ↾s ( Base ‘ 𝐾 ) ) ) |
32 |
11
|
fldcrngd |
⊢ ( 𝜑 → 𝐿 ∈ CRing ) |
33 |
32
|
crngringd |
⊢ ( 𝜑 → 𝐿 ∈ Ring ) |
34 |
14
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
35 |
34
|
crngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
36 |
2 35
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
37 |
26 36
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐿 ↾s 𝐹 ) ∈ Ring ) |
38 |
1 20 9
|
fldgenssv |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ⊆ 𝐵 ) |
39 |
3 1
|
ressbas2 |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ⊆ 𝐵 → ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) = ( Base ‘ 𝐿 ) ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) = ( Base ‘ 𝐿 ) ) |
41 |
22 40
|
sseqtrd |
⊢ ( 𝜑 → 𝐹 ⊆ ( Base ‘ 𝐿 ) ) |
42 |
20
|
drngringd |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
43 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
44 |
|
eqid |
⊢ ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐸 ) |
45 |
44
|
subrg1cl |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → ( 1r ‘ 𝐸 ) ∈ 𝐹 ) |
46 |
5 43 45
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐸 ) ∈ 𝐹 ) |
47 |
22 46
|
sseldd |
⊢ ( 𝜑 → ( 1r ‘ 𝐸 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ) |
48 |
3 1 44
|
ress1r |
⊢ ( ( 𝐸 ∈ Ring ∧ ( 1r ‘ 𝐸 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ∧ ( 𝐸 fldGen ( 𝐹 ∪ 𝐴 ) ) ⊆ 𝐵 ) → ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐿 ) ) |
49 |
42 47 38 48
|
syl3anc |
⊢ ( 𝜑 → ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐿 ) ) |
50 |
49 46
|
eqeltrrd |
⊢ ( 𝜑 → ( 1r ‘ 𝐿 ) ∈ 𝐹 ) |
51 |
41 50
|
jca |
⊢ ( 𝜑 → ( 𝐹 ⊆ ( Base ‘ 𝐿 ) ∧ ( 1r ‘ 𝐿 ) ∈ 𝐹 ) ) |
52 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
53 |
|
eqid |
⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) |
54 |
52 53
|
issubrg |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐿 ) ↔ ( ( 𝐿 ∈ Ring ∧ ( 𝐿 ↾s 𝐹 ) ∈ Ring ) ∧ ( 𝐹 ⊆ ( Base ‘ 𝐿 ) ∧ ( 1r ‘ 𝐿 ) ∈ 𝐹 ) ) ) |
55 |
33 37 51 54
|
syl21anbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐿 ) ) |
56 |
28 55
|
eqeltrrd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐿 ) ) |
57 |
|
brfldext |
⊢ ( ( 𝐿 ∈ Field ∧ 𝐾 ∈ Field ) → ( 𝐿 /FldExt 𝐾 ↔ ( 𝐾 = ( 𝐿 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐿 ) ) ) ) |
58 |
57
|
biimpar |
⊢ ( ( ( 𝐿 ∈ Field ∧ 𝐾 ∈ Field ) ∧ ( 𝐾 = ( 𝐿 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐿 ) ) ) → 𝐿 /FldExt 𝐾 ) |
59 |
11 14 31 56 58
|
syl22anc |
⊢ ( 𝜑 → 𝐿 /FldExt 𝐾 ) |