Metamath Proof Explorer


Theorem zgt0ge1

Description: An integer greater than 0 is greater than or equal to 1 . (Contributed by AV, 14-Oct-2018)

Ref Expression
Assertion zgt0ge1 Z 0 < Z 1 Z

Proof

Step Hyp Ref Expression
1 0z 0
2 zltp1le 0 Z 0 < Z 0 + 1 Z
3 1 2 mpan Z 0 < Z 0 + 1 Z
4 0p1e1 0 + 1 = 1
5 4 a1i Z 0 + 1 = 1
6 5 breq1d Z 0 + 1 Z 1 Z
7 3 6 bitrd Z 0 < Z 1 Z