| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
⊢ 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrextdg2.1 |
⊢ 𝐸 = ( ℂfld ↾s 𝑒 ) |
| 3 |
|
constrextdg2.2 |
⊢ 𝐹 = ( ℂfld ↾s 𝑓 ) |
| 4 |
|
constrextdg2.l |
⊢ < = { 〈 𝑓 , 𝑒 〉 ∣ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) } |
| 5 |
|
constrextdg2.n |
⊢ ( 𝜑 → 𝑁 ∈ ω ) |
| 6 |
|
constrextdg2lem.1 |
⊢ ( 𝜑 → 𝑅 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) |
| 7 |
|
constrextdg2lem.2 |
⊢ ( 𝜑 → ( 𝑅 ‘ 0 ) = ℚ ) |
| 8 |
|
constrextdg2lem.3 |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑁 ) ⊆ ( lastS ‘ 𝑅 ) ) |
| 9 |
|
uneq2 |
⊢ ( 𝑖 = ∅ → ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) = ( ( 𝐶 ‘ 𝑁 ) ∪ ∅ ) ) |
| 10 |
9
|
sseq1d |
⊢ ( 𝑖 = ∅ → ( ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑣 ) ↔ ( ( 𝐶 ‘ 𝑁 ) ∪ ∅ ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 11 |
10
|
anbi2d |
⊢ ( 𝑖 = ∅ → ( ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ∅ ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 12 |
11
|
rexbidv |
⊢ ( 𝑖 = ∅ → ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ∅ ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 13 |
|
uneq2 |
⊢ ( 𝑖 = 𝑔 → ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) = ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ) |
| 14 |
13
|
sseq1d |
⊢ ( 𝑖 = 𝑔 → ( ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑣 ) ↔ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 15 |
14
|
anbi2d |
⊢ ( 𝑖 = 𝑔 → ( ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 16 |
15
|
rexbidv |
⊢ ( 𝑖 = 𝑔 → ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 17 |
|
fveq1 |
⊢ ( 𝑣 = 𝑢 → ( 𝑣 ‘ 0 ) = ( 𝑢 ‘ 0 ) ) |
| 18 |
17
|
eqeq1d |
⊢ ( 𝑣 = 𝑢 → ( ( 𝑣 ‘ 0 ) = ℚ ↔ ( 𝑢 ‘ 0 ) = ℚ ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑣 = 𝑢 → ( lastS ‘ 𝑣 ) = ( lastS ‘ 𝑢 ) ) |
| 20 |
19
|
sseq2d |
⊢ ( 𝑣 = 𝑢 → ( ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑣 ) ↔ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑢 ) ) ) |
| 21 |
18 20
|
anbi12d |
⊢ ( 𝑣 = 𝑢 → ( ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑢 ) ) ) ) |
| 22 |
21
|
cbvrexvw |
⊢ ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ∃ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑢 ) ) ) |
| 23 |
|
uneq2 |
⊢ ( 𝑖 = ( 𝑔 ∪ { 𝑦 } ) → ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) = ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ) |
| 24 |
23
|
sseq1d |
⊢ ( 𝑖 = ( 𝑔 ∪ { 𝑦 } ) → ( ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑢 ) ↔ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ) ) |
| 25 |
24
|
anbi2d |
⊢ ( 𝑖 = ( 𝑔 ∪ { 𝑦 } ) → ( ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑢 ) ) ↔ ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ) ) ) |
| 26 |
25
|
rexbidv |
⊢ ( 𝑖 = ( 𝑔 ∪ { 𝑦 } ) → ( ∃ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑢 ) ) ↔ ∃ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ) ) ) |
| 27 |
22 26
|
bitrid |
⊢ ( 𝑖 = ( 𝑔 ∪ { 𝑦 } ) → ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ∃ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ) ) ) |
| 28 |
|
uneq2 |
⊢ ( 𝑖 = ( 𝐶 ‘ suc 𝑁 ) → ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) = ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝐶 ‘ suc 𝑁 ) ) ) |
| 29 |
28
|
sseq1d |
⊢ ( 𝑖 = ( 𝐶 ‘ suc 𝑁 ) → ( ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑣 ) ↔ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝐶 ‘ suc 𝑁 ) ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 30 |
29
|
anbi2d |
⊢ ( 𝑖 = ( 𝐶 ‘ suc 𝑁 ) → ( ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝐶 ‘ suc 𝑁 ) ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 31 |
30
|
rexbidv |
⊢ ( 𝑖 = ( 𝐶 ‘ suc 𝑁 ) → ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑖 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝐶 ‘ suc 𝑁 ) ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 32 |
|
fveq1 |
⊢ ( 𝑣 = 𝑅 → ( 𝑣 ‘ 0 ) = ( 𝑅 ‘ 0 ) ) |
| 33 |
32
|
eqeq1d |
⊢ ( 𝑣 = 𝑅 → ( ( 𝑣 ‘ 0 ) = ℚ ↔ ( 𝑅 ‘ 0 ) = ℚ ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑣 = 𝑅 → ( lastS ‘ 𝑣 ) = ( lastS ‘ 𝑅 ) ) |
| 35 |
34
|
sseq2d |
⊢ ( 𝑣 = 𝑅 → ( ( ( 𝐶 ‘ 𝑁 ) ∪ ∅ ) ⊆ ( lastS ‘ 𝑣 ) ↔ ( ( 𝐶 ‘ 𝑁 ) ∪ ∅ ) ⊆ ( lastS ‘ 𝑅 ) ) ) |
| 36 |
33 35
|
anbi12d |
⊢ ( 𝑣 = 𝑅 → ( ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ∅ ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ( ( 𝑅 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ∅ ) ⊆ ( lastS ‘ 𝑅 ) ) ) ) |
| 37 |
|
un0 |
⊢ ( ( 𝐶 ‘ 𝑁 ) ∪ ∅ ) = ( 𝐶 ‘ 𝑁 ) |
| 38 |
37 8
|
eqsstrid |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝑁 ) ∪ ∅ ) ⊆ ( lastS ‘ 𝑅 ) ) |
| 39 |
7 38
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ∅ ) ⊆ ( lastS ‘ 𝑅 ) ) ) |
| 40 |
36 6 39
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ∅ ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 41 |
|
fveq1 |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 ‘ 0 ) = ( 𝑣 ‘ 0 ) ) |
| 42 |
41
|
eqeq1d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 ‘ 0 ) = ℚ ↔ ( 𝑣 ‘ 0 ) = ℚ ) ) |
| 43 |
|
fveq2 |
⊢ ( 𝑢 = 𝑣 → ( lastS ‘ 𝑢 ) = ( lastS ‘ 𝑣 ) ) |
| 44 |
43
|
sseq2d |
⊢ ( 𝑢 = 𝑣 → ( ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ↔ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 45 |
42 44
|
anbi12d |
⊢ ( 𝑢 = 𝑣 → ( ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ) ↔ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 46 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) |
| 47 |
46
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑦 ∈ ( lastS ‘ 𝑣 ) ) → 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) |
| 48 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑦 ∈ ( lastS ‘ 𝑣 ) ) → ( 𝑣 ‘ 0 ) = ℚ ) |
| 49 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 50 |
49
|
unssad |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → ( 𝐶 ‘ 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑦 ∈ ( lastS ‘ 𝑣 ) ) → ( 𝐶 ‘ 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 52 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑦 ∈ ( lastS ‘ 𝑣 ) ) → ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 53 |
52
|
unssbd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑦 ∈ ( lastS ‘ 𝑣 ) ) → 𝑔 ⊆ ( lastS ‘ 𝑣 ) ) |
| 54 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑦 ∈ ( lastS ‘ 𝑣 ) ) → 𝑦 ∈ ( lastS ‘ 𝑣 ) ) |
| 55 |
54
|
snssd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑦 ∈ ( lastS ‘ 𝑣 ) ) → { 𝑦 } ⊆ ( lastS ‘ 𝑣 ) ) |
| 56 |
53 55
|
unssd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑦 ∈ ( lastS ‘ 𝑣 ) ) → ( 𝑔 ∪ { 𝑦 } ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 57 |
51 56
|
unssd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑦 ∈ ( lastS ‘ 𝑣 ) ) → ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 58 |
48 57
|
jca |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑦 ∈ ( lastS ‘ 𝑣 ) ) → ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 59 |
45 47 58
|
rspcedvdw |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑦 ∈ ( lastS ‘ 𝑣 ) ) → ∃ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ) ) |
| 60 |
|
fveq1 |
⊢ ( 𝑢 = ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) → ( 𝑢 ‘ 0 ) = ( ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ‘ 0 ) ) |
| 61 |
60
|
eqeq1d |
⊢ ( 𝑢 = ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) → ( ( 𝑢 ‘ 0 ) = ℚ ↔ ( ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ‘ 0 ) = ℚ ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) → ( lastS ‘ 𝑢 ) = ( lastS ‘ ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ) ) |
| 63 |
62
|
sseq2d |
⊢ ( 𝑢 = ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) → ( ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ↔ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ) ) ) |
| 64 |
61 63
|
anbi12d |
⊢ ( 𝑢 = ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) → ( ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ) ↔ ( ( ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ) ) ) ) |
| 65 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 66 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
| 67 |
66
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ℂfld ∈ DivRing ) |
| 68 |
46
|
chnwrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → 𝑣 ∈ Word ( SubDRing ‘ ℂfld ) ) |
| 69 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑣 = ∅ ) → 𝑣 = ∅ ) |
| 70 |
69
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑣 = ∅ ) → ( lastS ‘ 𝑣 ) = ( lastS ‘ ∅ ) ) |
| 71 |
|
lsw0g |
⊢ ( lastS ‘ ∅ ) = ∅ |
| 72 |
70 71
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑣 = ∅ ) → ( lastS ‘ 𝑣 ) = ∅ ) |
| 73 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑣 = ∅ ) → ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 74 |
|
ssun1 |
⊢ ( 𝐶 ‘ 𝑁 ) ⊆ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) |
| 75 |
|
nnon |
⊢ ( 𝑁 ∈ ω → 𝑁 ∈ On ) |
| 76 |
5 75
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ On ) |
| 77 |
1 76
|
constr01 |
⊢ ( 𝜑 → { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑁 ) ) |
| 78 |
|
c0ex |
⊢ 0 ∈ V |
| 79 |
78
|
prnz |
⊢ { 0 , 1 } ≠ ∅ |
| 80 |
|
ssn0 |
⊢ ( ( { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑁 ) ∧ { 0 , 1 } ≠ ∅ ) → ( 𝐶 ‘ 𝑁 ) ≠ ∅ ) |
| 81 |
77 79 80
|
sylancl |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑁 ) ≠ ∅ ) |
| 82 |
|
ssn0 |
⊢ ( ( ( 𝐶 ‘ 𝑁 ) ⊆ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ∧ ( 𝐶 ‘ 𝑁 ) ≠ ∅ ) → ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ≠ ∅ ) |
| 83 |
74 81 82
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ≠ ∅ ) |
| 84 |
83
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑣 = ∅ ) → ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ≠ ∅ ) |
| 85 |
|
ssn0 |
⊢ ( ( ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ≠ ∅ ) → ( lastS ‘ 𝑣 ) ≠ ∅ ) |
| 86 |
73 84 85
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑣 = ∅ ) → ( lastS ‘ 𝑣 ) ≠ ∅ ) |
| 87 |
86
|
neneqd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑣 = ∅ ) → ¬ ( lastS ‘ 𝑣 ) = ∅ ) |
| 88 |
72 87
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → ¬ 𝑣 = ∅ ) |
| 89 |
88
|
neqned |
⊢ ( ( 𝜑 ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → 𝑣 ≠ ∅ ) |
| 90 |
89
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) → 𝑣 ≠ ∅ ) |
| 91 |
90
|
an62ds |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → 𝑣 ≠ ∅ ) |
| 92 |
|
lswcl |
⊢ ( ( 𝑣 ∈ Word ( SubDRing ‘ ℂfld ) ∧ 𝑣 ≠ ∅ ) → ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) ) |
| 93 |
68 91 92
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) ) |
| 94 |
93
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) ) |
| 95 |
65
|
sdrgss |
⊢ ( ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) → ( lastS ‘ 𝑣 ) ⊆ ℂ ) |
| 96 |
94 95
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( lastS ‘ 𝑣 ) ⊆ ℂ ) |
| 97 |
|
onsuc |
⊢ ( 𝑁 ∈ On → suc 𝑁 ∈ On ) |
| 98 |
76 97
|
syl |
⊢ ( 𝜑 → suc 𝑁 ∈ On ) |
| 99 |
1 98
|
constrsscn |
⊢ ( 𝜑 → ( 𝐶 ‘ suc 𝑁 ) ⊆ ℂ ) |
| 100 |
99
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( 𝐶 ‘ suc 𝑁 ) ⊆ ℂ ) |
| 101 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) |
| 102 |
101
|
eldifad |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → 𝑦 ∈ ( 𝐶 ‘ suc 𝑁 ) ) |
| 103 |
102
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → 𝑦 ∈ ( 𝐶 ‘ suc 𝑁 ) ) |
| 104 |
100 103
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → 𝑦 ∈ ℂ ) |
| 105 |
104
|
snssd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → { 𝑦 } ⊆ ℂ ) |
| 106 |
96 105
|
unssd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ⊆ ℂ ) |
| 107 |
65 67 106
|
fldgensdrg |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ∈ ( SubDRing ‘ ℂfld ) ) |
| 108 |
46
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) |
| 109 |
94
|
elexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( lastS ‘ 𝑣 ) ∈ V ) |
| 110 |
107
|
elexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ∈ V ) |
| 111 |
|
eqid |
⊢ ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) = ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) |
| 112 |
|
eqid |
⊢ ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) = ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) |
| 113 |
|
cnfldfld |
⊢ ℂfld ∈ Field |
| 114 |
113
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ℂfld ∈ Field ) |
| 115 |
65 111 112 114 94 105
|
fldgenfldext |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) /FldExt ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) |
| 116 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) |
| 117 |
2 3
|
breq12i |
⊢ ( 𝐸 /FldExt 𝐹 ↔ ( ℂfld ↾s 𝑒 ) /FldExt ( ℂfld ↾s 𝑓 ) ) |
| 118 |
|
oveq2 |
⊢ ( 𝑒 = ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) → ( ℂfld ↾s 𝑒 ) = ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) ) |
| 119 |
118
|
adantl |
⊢ ( ( 𝑓 = ( lastS ‘ 𝑣 ) ∧ 𝑒 = ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) → ( ℂfld ↾s 𝑒 ) = ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) ) |
| 120 |
|
oveq2 |
⊢ ( 𝑓 = ( lastS ‘ 𝑣 ) → ( ℂfld ↾s 𝑓 ) = ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) |
| 121 |
120
|
adantr |
⊢ ( ( 𝑓 = ( lastS ‘ 𝑣 ) ∧ 𝑒 = ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) → ( ℂfld ↾s 𝑓 ) = ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) |
| 122 |
119 121
|
breq12d |
⊢ ( ( 𝑓 = ( lastS ‘ 𝑣 ) ∧ 𝑒 = ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) → ( ( ℂfld ↾s 𝑒 ) /FldExt ( ℂfld ↾s 𝑓 ) ↔ ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) /FldExt ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) ) |
| 123 |
117 122
|
bitrid |
⊢ ( ( 𝑓 = ( lastS ‘ 𝑣 ) ∧ 𝑒 = ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) → ( 𝐸 /FldExt 𝐹 ↔ ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) /FldExt ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) ) |
| 124 |
2 3
|
oveq12i |
⊢ ( 𝐸 [:] 𝐹 ) = ( ( ℂfld ↾s 𝑒 ) [:] ( ℂfld ↾s 𝑓 ) ) |
| 125 |
119 121
|
oveq12d |
⊢ ( ( 𝑓 = ( lastS ‘ 𝑣 ) ∧ 𝑒 = ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) → ( ( ℂfld ↾s 𝑒 ) [:] ( ℂfld ↾s 𝑓 ) ) = ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) ) |
| 126 |
124 125
|
eqtrid |
⊢ ( ( 𝑓 = ( lastS ‘ 𝑣 ) ∧ 𝑒 = ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) → ( 𝐸 [:] 𝐹 ) = ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) ) |
| 127 |
126
|
eqeq1d |
⊢ ( ( 𝑓 = ( lastS ‘ 𝑣 ) ∧ 𝑒 = ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) → ( ( 𝐸 [:] 𝐹 ) = 2 ↔ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) ) |
| 128 |
123 127
|
anbi12d |
⊢ ( ( 𝑓 = ( lastS ‘ 𝑣 ) ∧ 𝑒 = ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) → ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) ↔ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) /FldExt ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) ) ) |
| 129 |
128 4
|
brabga |
⊢ ( ( ( lastS ‘ 𝑣 ) ∈ V ∧ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ∈ V ) → ( ( lastS ‘ 𝑣 ) < ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ↔ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) /FldExt ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) ) ) |
| 130 |
129
|
biimpar |
⊢ ( ( ( ( lastS ‘ 𝑣 ) ∈ V ∧ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ∈ V ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) /FldExt ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) ) → ( lastS ‘ 𝑣 ) < ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) |
| 131 |
109 110 115 116 130
|
syl22anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( lastS ‘ 𝑣 ) < ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) |
| 132 |
131
|
olcd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( 𝑣 = ∅ ∨ ( lastS ‘ 𝑣 ) < ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) ) |
| 133 |
107 108 132
|
chnccats1 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) |
| 134 |
68
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → 𝑣 ∈ Word ( SubDRing ‘ ℂfld ) ) |
| 135 |
107
|
s1cld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ∈ Word ( SubDRing ‘ ℂfld ) ) |
| 136 |
|
hashgt0 |
⊢ ( ( 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ∧ 𝑣 ≠ ∅ ) → 0 < ( ♯ ‘ 𝑣 ) ) |
| 137 |
46 91 136
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → 0 < ( ♯ ‘ 𝑣 ) ) |
| 138 |
137
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → 0 < ( ♯ ‘ 𝑣 ) ) |
| 139 |
|
ccatfv0 |
⊢ ( ( 𝑣 ∈ Word ( SubDRing ‘ ℂfld ) ∧ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ∈ Word ( SubDRing ‘ ℂfld ) ∧ 0 < ( ♯ ‘ 𝑣 ) ) → ( ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ‘ 0 ) = ( 𝑣 ‘ 0 ) ) |
| 140 |
134 135 138 139
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ‘ 0 ) = ( 𝑣 ‘ 0 ) ) |
| 141 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( 𝑣 ‘ 0 ) = ℚ ) |
| 142 |
140 141
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ‘ 0 ) = ℚ ) |
| 143 |
50
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( 𝐶 ‘ 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 144 |
|
ssun3 |
⊢ ( ( 𝐶 ‘ 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) → ( 𝐶 ‘ 𝑁 ) ⊆ ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) |
| 145 |
143 144
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( 𝐶 ‘ 𝑁 ) ⊆ ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) |
| 146 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 147 |
146
|
unssbd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → 𝑔 ⊆ ( lastS ‘ 𝑣 ) ) |
| 148 |
|
ssun3 |
⊢ ( 𝑔 ⊆ ( lastS ‘ 𝑣 ) → 𝑔 ⊆ ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) |
| 149 |
147 148
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → 𝑔 ⊆ ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) |
| 150 |
|
ssun2 |
⊢ { 𝑦 } ⊆ ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) |
| 151 |
150
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → { 𝑦 } ⊆ ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) |
| 152 |
149 151
|
unssd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( 𝑔 ∪ { 𝑦 } ) ⊆ ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) |
| 153 |
145 152
|
unssd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) |
| 154 |
65 67 106
|
fldgenssid |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ⊆ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) |
| 155 |
153 154
|
sstrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) |
| 156 |
|
lswccats1 |
⊢ ( ( 𝑣 ∈ Word ( SubDRing ‘ ℂfld ) ∧ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ∈ ( SubDRing ‘ ℂfld ) ) → ( lastS ‘ ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ) = ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) |
| 157 |
134 107 156
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( lastS ‘ ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ) = ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) |
| 158 |
155 157
|
sseqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ) ) |
| 159 |
142 158
|
jca |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ( ( ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ ( 𝑣 ++ 〈“ ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ”〉 ) ) ) ) |
| 160 |
64 133 159
|
rspcedvdw |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) → ∃ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ) ) |
| 161 |
76
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → 𝑁 ∈ On ) |
| 162 |
1 111 112 93 161 50 102
|
constrelextdg2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → ( 𝑦 ∈ ( lastS ‘ 𝑣 ) ∨ ( ( ℂfld ↾s ( ℂfld fldGen ( ( lastS ‘ 𝑣 ) ∪ { 𝑦 } ) ) ) [:] ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = 2 ) ) |
| 163 |
59 160 162
|
mpjaodan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑣 ‘ 0 ) = ℚ ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → ∃ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ) ) |
| 164 |
163
|
anasss |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ∃ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ) ) |
| 165 |
164
|
rexlimdva2 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) → ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → ∃ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ) ) ) |
| 166 |
165
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑔 ⊆ ( 𝐶 ‘ suc 𝑁 ) ∧ 𝑦 ∈ ( ( 𝐶 ‘ suc 𝑁 ) ∖ 𝑔 ) ) ) → ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ 𝑔 ) ⊆ ( lastS ‘ 𝑣 ) ) → ∃ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝑔 ∪ { 𝑦 } ) ) ⊆ ( lastS ‘ 𝑢 ) ) ) ) |
| 167 |
|
peano2 |
⊢ ( 𝑁 ∈ ω → suc 𝑁 ∈ ω ) |
| 168 |
5 167
|
syl |
⊢ ( 𝜑 → suc 𝑁 ∈ ω ) |
| 169 |
1 168
|
constrfin |
⊢ ( 𝜑 → ( 𝐶 ‘ suc 𝑁 ) ∈ Fin ) |
| 170 |
12 16 27 31 40 166 169
|
findcard2d |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝐶 ‘ suc 𝑁 ) ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 171 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝐶 ‘ suc 𝑁 ) ) ⊆ ( lastS ‘ 𝑣 ) ) → ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝐶 ‘ suc 𝑁 ) ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 172 |
171
|
unssbd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝐶 ‘ suc 𝑁 ) ) ⊆ ( lastS ‘ 𝑣 ) ) → ( 𝐶 ‘ suc 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 173 |
172
|
ex |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) → ( ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝐶 ‘ suc 𝑁 ) ) ⊆ ( lastS ‘ 𝑣 ) → ( 𝐶 ‘ suc 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 174 |
173
|
anim2d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) → ( ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝐶 ‘ suc 𝑁 ) ) ⊆ ( lastS ‘ 𝑣 ) ) → ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ suc 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 175 |
174
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( ( 𝐶 ‘ 𝑁 ) ∪ ( 𝐶 ‘ suc 𝑁 ) ) ⊆ ( lastS ‘ 𝑣 ) ) → ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ suc 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 176 |
170 175
|
mpd |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ suc 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) ) ) |