| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
⊢ 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrextdg2.1 |
⊢ 𝐸 = ( ℂfld ↾s 𝑒 ) |
| 3 |
|
constrextdg2.2 |
⊢ 𝐹 = ( ℂfld ↾s 𝑓 ) |
| 4 |
|
constrextdg2.l |
⊢ < = { 〈 𝑓 , 𝑒 〉 ∣ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) } |
| 5 |
|
constrextdg2.n |
⊢ ( 𝜑 → 𝑁 ∈ ω ) |
| 6 |
|
fveq2 |
⊢ ( 𝑚 = ∅ → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ ∅ ) ) |
| 7 |
6
|
sseq1d |
⊢ ( 𝑚 = ∅ → ( ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ↔ ( 𝐶 ‘ ∅ ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 8 |
7
|
anbi2d |
⊢ ( 𝑚 = ∅ → ( ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ ∅ ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 9 |
8
|
rexbidv |
⊢ ( 𝑚 = ∅ → ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ ∅ ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ 𝑛 ) ) |
| 11 |
10
|
sseq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ↔ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 12 |
11
|
anbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 13 |
12
|
rexbidv |
⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 14 |
|
fveq1 |
⊢ ( 𝑣 = 𝑢 → ( 𝑣 ‘ 0 ) = ( 𝑢 ‘ 0 ) ) |
| 15 |
14
|
eqeq1d |
⊢ ( 𝑣 = 𝑢 → ( ( 𝑣 ‘ 0 ) = ℚ ↔ ( 𝑢 ‘ 0 ) = ℚ ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑣 = 𝑢 → ( lastS ‘ 𝑣 ) = ( lastS ‘ 𝑢 ) ) |
| 17 |
16
|
sseq2d |
⊢ ( 𝑣 = 𝑢 → ( ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑣 ) ↔ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑢 ) ) ) |
| 18 |
15 17
|
anbi12d |
⊢ ( 𝑣 = 𝑢 → ( ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑢 ) ) ) ) |
| 19 |
18
|
cbvrexvw |
⊢ ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ∃ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑢 ) ) ) |
| 20 |
13 19
|
bitrdi |
⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ∃ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑢 ) ) ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑚 = suc 𝑛 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ suc 𝑛 ) ) |
| 22 |
21
|
sseq1d |
⊢ ( 𝑚 = suc 𝑛 → ( ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ↔ ( 𝐶 ‘ suc 𝑛 ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 23 |
22
|
anbi2d |
⊢ ( 𝑚 = suc 𝑛 → ( ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ suc 𝑛 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 24 |
23
|
rexbidv |
⊢ ( 𝑚 = suc 𝑛 → ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ suc 𝑛 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ 𝑁 ) ) |
| 26 |
25
|
sseq1d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ↔ ( 𝐶 ‘ 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 27 |
26
|
anbi2d |
⊢ ( 𝑚 = 𝑁 → ( ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 28 |
27
|
rexbidv |
⊢ ( 𝑚 = 𝑁 → ( ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 29 |
|
fveq1 |
⊢ ( 𝑣 = 〈“ ℚ ”〉 → ( 𝑣 ‘ 0 ) = ( 〈“ ℚ ”〉 ‘ 0 ) ) |
| 30 |
29
|
eqeq1d |
⊢ ( 𝑣 = 〈“ ℚ ”〉 → ( ( 𝑣 ‘ 0 ) = ℚ ↔ ( 〈“ ℚ ”〉 ‘ 0 ) = ℚ ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑣 = 〈“ ℚ ”〉 → ( lastS ‘ 𝑣 ) = ( lastS ‘ 〈“ ℚ ”〉 ) ) |
| 32 |
31
|
sseq2d |
⊢ ( 𝑣 = 〈“ ℚ ”〉 → ( ( 𝐶 ‘ ∅ ) ⊆ ( lastS ‘ 𝑣 ) ↔ ( 𝐶 ‘ ∅ ) ⊆ ( lastS ‘ 〈“ ℚ ”〉 ) ) ) |
| 33 |
30 32
|
anbi12d |
⊢ ( 𝑣 = 〈“ ℚ ”〉 → ( ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ ∅ ) ⊆ ( lastS ‘ 𝑣 ) ) ↔ ( ( 〈“ ℚ ”〉 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ ∅ ) ⊆ ( lastS ‘ 〈“ ℚ ”〉 ) ) ) ) |
| 34 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
| 35 |
|
qsubdrg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) |
| 36 |
35
|
simpli |
⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
| 37 |
35
|
simpri |
⊢ ( ℂfld ↾s ℚ ) ∈ DivRing |
| 38 |
|
issdrg |
⊢ ( ℚ ∈ ( SubDRing ‘ ℂfld ) ↔ ( ℂfld ∈ DivRing ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) ) |
| 39 |
34 36 37 38
|
mpbir3an |
⊢ ℚ ∈ ( SubDRing ‘ ℂfld ) |
| 40 |
39
|
a1i |
⊢ ( ⊤ → ℚ ∈ ( SubDRing ‘ ℂfld ) ) |
| 41 |
40
|
s1chn |
⊢ ( ⊤ → 〈“ ℚ ”〉 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) |
| 42 |
|
s1fv |
⊢ ( ℚ ∈ ( SubDRing ‘ ℂfld ) → ( 〈“ ℚ ”〉 ‘ 0 ) = ℚ ) |
| 43 |
40 42
|
syl |
⊢ ( ⊤ → ( 〈“ ℚ ”〉 ‘ 0 ) = ℚ ) |
| 44 |
|
0z |
⊢ 0 ∈ ℤ |
| 45 |
|
1z |
⊢ 1 ∈ ℤ |
| 46 |
|
prssi |
⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) → { 0 , 1 } ⊆ ℤ ) |
| 47 |
44 45 46
|
mp2an |
⊢ { 0 , 1 } ⊆ ℤ |
| 48 |
|
zssq |
⊢ ℤ ⊆ ℚ |
| 49 |
47 48
|
sstri |
⊢ { 0 , 1 } ⊆ ℚ |
| 50 |
1
|
constr0 |
⊢ ( 𝐶 ‘ ∅ ) = { 0 , 1 } |
| 51 |
|
lsws1 |
⊢ ( ℚ ∈ ( SubDRing ‘ ℂfld ) → ( lastS ‘ 〈“ ℚ ”〉 ) = ℚ ) |
| 52 |
39 51
|
ax-mp |
⊢ ( lastS ‘ 〈“ ℚ ”〉 ) = ℚ |
| 53 |
49 50 52
|
3sstr4i |
⊢ ( 𝐶 ‘ ∅ ) ⊆ ( lastS ‘ 〈“ ℚ ”〉 ) |
| 54 |
43 53
|
jctir |
⊢ ( ⊤ → ( ( 〈“ ℚ ”〉 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ ∅ ) ⊆ ( lastS ‘ 〈“ ℚ ”〉 ) ) ) |
| 55 |
33 41 54
|
rspcedvdw |
⊢ ( ⊤ → ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ ∅ ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 56 |
55
|
mptru |
⊢ ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ ∅ ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 57 |
|
simplll |
⊢ ( ( ( ( 𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑢 ‘ 0 ) = ℚ ) ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑢 ) ) → 𝑛 ∈ ω ) |
| 58 |
|
simpllr |
⊢ ( ( ( ( 𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑢 ‘ 0 ) = ℚ ) ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑢 ) ) → 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) |
| 59 |
|
simplr |
⊢ ( ( ( ( 𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑢 ‘ 0 ) = ℚ ) ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑢 ) ) → ( 𝑢 ‘ 0 ) = ℚ ) |
| 60 |
|
simpr |
⊢ ( ( ( ( 𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑢 ‘ 0 ) = ℚ ) ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑢 ) ) → ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑢 ) ) |
| 61 |
1 2 3 4 57 58 59 60
|
constrextdg2lem |
⊢ ( ( ( ( 𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( 𝑢 ‘ 0 ) = ℚ ) ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑢 ) ) → ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ suc 𝑛 ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 62 |
61
|
anasss |
⊢ ( ( ( 𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑢 ) ) ) → ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ suc 𝑛 ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 63 |
62
|
rexlimdva2 |
⊢ ( 𝑛 ∈ ω → ( ∃ 𝑢 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑢 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑛 ) ⊆ ( lastS ‘ 𝑢 ) ) → ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ suc 𝑛 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 64 |
9 20 24 28 56 63
|
finds |
⊢ ( 𝑁 ∈ ω → ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 65 |
5 64
|
syl |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑁 ) ⊆ ( lastS ‘ 𝑣 ) ) ) |