| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|- C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrextdg2.1 |
|- E = ( CCfld |`s e ) |
| 3 |
|
constrextdg2.2 |
|- F = ( CCfld |`s f ) |
| 4 |
|
constrextdg2.l |
|- .< = { <. f , e >. | ( E /FldExt F /\ ( E [:] F ) = 2 ) } |
| 5 |
|
constrextdg2.n |
|- ( ph -> N e. _om ) |
| 6 |
|
fveq2 |
|- ( m = (/) -> ( C ` m ) = ( C ` (/) ) ) |
| 7 |
6
|
sseq1d |
|- ( m = (/) -> ( ( C ` m ) C_ ( lastS ` v ) <-> ( C ` (/) ) C_ ( lastS ` v ) ) ) |
| 8 |
7
|
anbi2d |
|- ( m = (/) -> ( ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) <-> ( ( v ` 0 ) = QQ /\ ( C ` (/) ) C_ ( lastS ` v ) ) ) ) |
| 9 |
8
|
rexbidv |
|- ( m = (/) -> ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) <-> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` (/) ) C_ ( lastS ` v ) ) ) ) |
| 10 |
|
fveq2 |
|- ( m = n -> ( C ` m ) = ( C ` n ) ) |
| 11 |
10
|
sseq1d |
|- ( m = n -> ( ( C ` m ) C_ ( lastS ` v ) <-> ( C ` n ) C_ ( lastS ` v ) ) ) |
| 12 |
11
|
anbi2d |
|- ( m = n -> ( ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) <-> ( ( v ` 0 ) = QQ /\ ( C ` n ) C_ ( lastS ` v ) ) ) ) |
| 13 |
12
|
rexbidv |
|- ( m = n -> ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) <-> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` n ) C_ ( lastS ` v ) ) ) ) |
| 14 |
|
fveq1 |
|- ( v = u -> ( v ` 0 ) = ( u ` 0 ) ) |
| 15 |
14
|
eqeq1d |
|- ( v = u -> ( ( v ` 0 ) = QQ <-> ( u ` 0 ) = QQ ) ) |
| 16 |
|
fveq2 |
|- ( v = u -> ( lastS ` v ) = ( lastS ` u ) ) |
| 17 |
16
|
sseq2d |
|- ( v = u -> ( ( C ` n ) C_ ( lastS ` v ) <-> ( C ` n ) C_ ( lastS ` u ) ) ) |
| 18 |
15 17
|
anbi12d |
|- ( v = u -> ( ( ( v ` 0 ) = QQ /\ ( C ` n ) C_ ( lastS ` v ) ) <-> ( ( u ` 0 ) = QQ /\ ( C ` n ) C_ ( lastS ` u ) ) ) ) |
| 19 |
18
|
cbvrexvw |
|- ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` n ) C_ ( lastS ` v ) ) <-> E. u e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( u ` 0 ) = QQ /\ ( C ` n ) C_ ( lastS ` u ) ) ) |
| 20 |
13 19
|
bitrdi |
|- ( m = n -> ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) <-> E. u e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( u ` 0 ) = QQ /\ ( C ` n ) C_ ( lastS ` u ) ) ) ) |
| 21 |
|
fveq2 |
|- ( m = suc n -> ( C ` m ) = ( C ` suc n ) ) |
| 22 |
21
|
sseq1d |
|- ( m = suc n -> ( ( C ` m ) C_ ( lastS ` v ) <-> ( C ` suc n ) C_ ( lastS ` v ) ) ) |
| 23 |
22
|
anbi2d |
|- ( m = suc n -> ( ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) <-> ( ( v ` 0 ) = QQ /\ ( C ` suc n ) C_ ( lastS ` v ) ) ) ) |
| 24 |
23
|
rexbidv |
|- ( m = suc n -> ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) <-> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` suc n ) C_ ( lastS ` v ) ) ) ) |
| 25 |
|
fveq2 |
|- ( m = N -> ( C ` m ) = ( C ` N ) ) |
| 26 |
25
|
sseq1d |
|- ( m = N -> ( ( C ` m ) C_ ( lastS ` v ) <-> ( C ` N ) C_ ( lastS ` v ) ) ) |
| 27 |
26
|
anbi2d |
|- ( m = N -> ( ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) <-> ( ( v ` 0 ) = QQ /\ ( C ` N ) C_ ( lastS ` v ) ) ) ) |
| 28 |
27
|
rexbidv |
|- ( m = N -> ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) <-> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` N ) C_ ( lastS ` v ) ) ) ) |
| 29 |
|
fveq1 |
|- ( v = <" QQ "> -> ( v ` 0 ) = ( <" QQ "> ` 0 ) ) |
| 30 |
29
|
eqeq1d |
|- ( v = <" QQ "> -> ( ( v ` 0 ) = QQ <-> ( <" QQ "> ` 0 ) = QQ ) ) |
| 31 |
|
fveq2 |
|- ( v = <" QQ "> -> ( lastS ` v ) = ( lastS ` <" QQ "> ) ) |
| 32 |
31
|
sseq2d |
|- ( v = <" QQ "> -> ( ( C ` (/) ) C_ ( lastS ` v ) <-> ( C ` (/) ) C_ ( lastS ` <" QQ "> ) ) ) |
| 33 |
30 32
|
anbi12d |
|- ( v = <" QQ "> -> ( ( ( v ` 0 ) = QQ /\ ( C ` (/) ) C_ ( lastS ` v ) ) <-> ( ( <" QQ "> ` 0 ) = QQ /\ ( C ` (/) ) C_ ( lastS ` <" QQ "> ) ) ) ) |
| 34 |
|
cndrng |
|- CCfld e. DivRing |
| 35 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
| 36 |
35
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
| 37 |
35
|
simpri |
|- ( CCfld |`s QQ ) e. DivRing |
| 38 |
|
issdrg |
|- ( QQ e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) ) |
| 39 |
34 36 37 38
|
mpbir3an |
|- QQ e. ( SubDRing ` CCfld ) |
| 40 |
39
|
a1i |
|- ( T. -> QQ e. ( SubDRing ` CCfld ) ) |
| 41 |
40
|
s1chn |
|- ( T. -> <" QQ "> e. ( .< Chain ( SubDRing ` CCfld ) ) ) |
| 42 |
|
s1fv |
|- ( QQ e. ( SubDRing ` CCfld ) -> ( <" QQ "> ` 0 ) = QQ ) |
| 43 |
40 42
|
syl |
|- ( T. -> ( <" QQ "> ` 0 ) = QQ ) |
| 44 |
|
0z |
|- 0 e. ZZ |
| 45 |
|
1z |
|- 1 e. ZZ |
| 46 |
|
prssi |
|- ( ( 0 e. ZZ /\ 1 e. ZZ ) -> { 0 , 1 } C_ ZZ ) |
| 47 |
44 45 46
|
mp2an |
|- { 0 , 1 } C_ ZZ |
| 48 |
|
zssq |
|- ZZ C_ QQ |
| 49 |
47 48
|
sstri |
|- { 0 , 1 } C_ QQ |
| 50 |
1
|
constr0 |
|- ( C ` (/) ) = { 0 , 1 } |
| 51 |
|
lsws1 |
|- ( QQ e. ( SubDRing ` CCfld ) -> ( lastS ` <" QQ "> ) = QQ ) |
| 52 |
39 51
|
ax-mp |
|- ( lastS ` <" QQ "> ) = QQ |
| 53 |
49 50 52
|
3sstr4i |
|- ( C ` (/) ) C_ ( lastS ` <" QQ "> ) |
| 54 |
43 53
|
jctir |
|- ( T. -> ( ( <" QQ "> ` 0 ) = QQ /\ ( C ` (/) ) C_ ( lastS ` <" QQ "> ) ) ) |
| 55 |
33 41 54
|
rspcedvdw |
|- ( T. -> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` (/) ) C_ ( lastS ` v ) ) ) |
| 56 |
55
|
mptru |
|- E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` (/) ) C_ ( lastS ` v ) ) |
| 57 |
|
simplll |
|- ( ( ( ( n e. _om /\ u e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( u ` 0 ) = QQ ) /\ ( C ` n ) C_ ( lastS ` u ) ) -> n e. _om ) |
| 58 |
|
simpllr |
|- ( ( ( ( n e. _om /\ u e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( u ` 0 ) = QQ ) /\ ( C ` n ) C_ ( lastS ` u ) ) -> u e. ( .< Chain ( SubDRing ` CCfld ) ) ) |
| 59 |
|
simplr |
|- ( ( ( ( n e. _om /\ u e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( u ` 0 ) = QQ ) /\ ( C ` n ) C_ ( lastS ` u ) ) -> ( u ` 0 ) = QQ ) |
| 60 |
|
simpr |
|- ( ( ( ( n e. _om /\ u e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( u ` 0 ) = QQ ) /\ ( C ` n ) C_ ( lastS ` u ) ) -> ( C ` n ) C_ ( lastS ` u ) ) |
| 61 |
1 2 3 4 57 58 59 60
|
constrextdg2lem |
|- ( ( ( ( n e. _om /\ u e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( u ` 0 ) = QQ ) /\ ( C ` n ) C_ ( lastS ` u ) ) -> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` suc n ) C_ ( lastS ` v ) ) ) |
| 62 |
61
|
anasss |
|- ( ( ( n e. _om /\ u e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( u ` 0 ) = QQ /\ ( C ` n ) C_ ( lastS ` u ) ) ) -> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` suc n ) C_ ( lastS ` v ) ) ) |
| 63 |
62
|
rexlimdva2 |
|- ( n e. _om -> ( E. u e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( u ` 0 ) = QQ /\ ( C ` n ) C_ ( lastS ` u ) ) -> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` suc n ) C_ ( lastS ` v ) ) ) ) |
| 64 |
9 20 24 28 56 63
|
finds |
|- ( N e. _om -> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` N ) C_ ( lastS ` v ) ) ) |
| 65 |
5 64
|
syl |
|- ( ph -> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` N ) C_ ( lastS ` v ) ) ) |