| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|- C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrextdg2.1 |
|- E = ( CCfld |`s e ) |
| 3 |
|
constrextdg2.2 |
|- F = ( CCfld |`s f ) |
| 4 |
|
constrextdg2.l |
|- .< = { <. f , e >. | ( E /FldExt F /\ ( E [:] F ) = 2 ) } |
| 5 |
|
constrextdg2.n |
|- ( ph -> N e. _om ) |
| 6 |
|
constrext2chnlem.q |
|- Q = ( CCfld |`s QQ ) |
| 7 |
|
constrext2chnlem.l |
|- L = ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) |
| 8 |
|
constrext2chnlem.a |
|- ( ph -> A e. Constr ) |
| 9 |
|
2prm |
|- 2 e. Prime |
| 10 |
9
|
a1i |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> 2 e. Prime ) |
| 11 |
7 6
|
oveq12i |
|- ( L [:] Q ) = ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) |
| 12 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 13 |
|
eqid |
|- ( CCfld |`s QQ ) = ( CCfld |`s QQ ) |
| 14 |
|
eqid |
|- ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) = ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) |
| 15 |
|
cnfldfld |
|- CCfld e. Field |
| 16 |
15
|
a1i |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> CCfld e. Field ) |
| 17 |
|
cndrng |
|- CCfld e. DivRing |
| 18 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
| 19 |
18
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
| 20 |
18
|
simpri |
|- ( CCfld |`s QQ ) e. DivRing |
| 21 |
|
issdrg |
|- ( QQ e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) ) |
| 22 |
17 19 20 21
|
mpbir3an |
|- QQ e. ( SubDRing ` CCfld ) |
| 23 |
22
|
a1i |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> QQ e. ( SubDRing ` CCfld ) ) |
| 24 |
|
nnon |
|- ( m e. _om -> m e. On ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ m e. _om ) -> m e. On ) |
| 26 |
1 25
|
constrsscn |
|- ( ( ph /\ m e. _om ) -> ( C ` m ) C_ CC ) |
| 27 |
26
|
sselda |
|- ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) -> A e. CC ) |
| 28 |
27
|
snssd |
|- ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) -> { A } C_ CC ) |
| 29 |
28
|
ad2antrr |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> { A } C_ CC ) |
| 30 |
12 13 14 16 23 29
|
fldgenfldext |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) /FldExt ( CCfld |`s QQ ) ) |
| 31 |
30
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) /FldExt ( CCfld |`s QQ ) ) |
| 32 |
|
extdgcl |
|- ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) /FldExt ( CCfld |`s QQ ) -> ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) e. NN0* ) |
| 33 |
31 32
|
syl |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) e. NN0* ) |
| 34 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) |
| 35 |
|
2z |
|- 2 e. ZZ |
| 36 |
35
|
a1i |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> 2 e. ZZ ) |
| 37 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> p e. NN0 ) |
| 38 |
36 37
|
zexpcld |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( 2 ^ p ) e. ZZ ) |
| 39 |
34 38
|
eqeltrd |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) e. ZZ ) |
| 40 |
39
|
zred |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) e. RR ) |
| 41 |
|
xnn0xr |
|- ( ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) e. NN0* -> ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) e. RR* ) |
| 42 |
31 32 41
|
3syl |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) e. RR* ) |
| 43 |
|
eqid |
|- ( Base ` ( CCfld |`s ( lastS ` v ) ) ) = ( Base ` ( CCfld |`s ( lastS ` v ) ) ) |
| 44 |
|
simplr |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> v e. ( .< Chain ( SubDRing ` CCfld ) ) ) |
| 45 |
|
simprl |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( v ` 0 ) = QQ ) |
| 46 |
45
|
oveq2d |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( CCfld |`s ( v ` 0 ) ) = ( CCfld |`s QQ ) ) |
| 47 |
|
eqidd |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( CCfld |`s ( lastS ` v ) ) = ( CCfld |`s ( lastS ` v ) ) ) |
| 48 |
|
simpr |
|- ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ v = (/) ) -> v = (/) ) |
| 49 |
48
|
fveq1d |
|- ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ v = (/) ) -> ( v ` 0 ) = ( (/) ` 0 ) ) |
| 50 |
|
0fv |
|- ( (/) ` 0 ) = (/) |
| 51 |
50
|
a1i |
|- ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ v = (/) ) -> ( (/) ` 0 ) = (/) ) |
| 52 |
49 51
|
eqtrd |
|- ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ v = (/) ) -> ( v ` 0 ) = (/) ) |
| 53 |
45
|
adantr |
|- ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ v = (/) ) -> ( v ` 0 ) = QQ ) |
| 54 |
|
1nn |
|- 1 e. NN |
| 55 |
|
nnq |
|- ( 1 e. NN -> 1 e. QQ ) |
| 56 |
54 55
|
ax-mp |
|- 1 e. QQ |
| 57 |
56
|
ne0ii |
|- QQ =/= (/) |
| 58 |
57
|
a1i |
|- ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ v = (/) ) -> QQ =/= (/) ) |
| 59 |
53 58
|
eqnetrd |
|- ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ v = (/) ) -> ( v ` 0 ) =/= (/) ) |
| 60 |
59
|
neneqd |
|- ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ v = (/) ) -> -. ( v ` 0 ) = (/) ) |
| 61 |
52 60
|
pm2.65da |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> -. v = (/) ) |
| 62 |
61
|
neqned |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> v =/= (/) ) |
| 63 |
44 62
|
hashne0 |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> 0 < ( # ` v ) ) |
| 64 |
2 3 4 44 16 46 47 63
|
fldext2chn |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( ( CCfld |`s ( lastS ` v ) ) /FldExt ( CCfld |`s QQ ) /\ E. p e. NN0 ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) ) |
| 65 |
64
|
simpld |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( CCfld |`s ( lastS ` v ) ) /FldExt ( CCfld |`s QQ ) ) |
| 66 |
|
fldextfld1 |
|- ( ( CCfld |`s ( lastS ` v ) ) /FldExt ( CCfld |`s QQ ) -> ( CCfld |`s ( lastS ` v ) ) e. Field ) |
| 67 |
65 66
|
syl |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( CCfld |`s ( lastS ` v ) ) e. Field ) |
| 68 |
44
|
chnwrd |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> v e. Word ( SubDRing ` CCfld ) ) |
| 69 |
|
lswcl |
|- ( ( v e. Word ( SubDRing ` CCfld ) /\ v =/= (/) ) -> ( lastS ` v ) e. ( SubDRing ` CCfld ) ) |
| 70 |
68 62 69
|
syl2anc |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( lastS ` v ) e. ( SubDRing ` CCfld ) ) |
| 71 |
17
|
a1i |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> CCfld e. DivRing ) |
| 72 |
|
qsscn |
|- QQ C_ CC |
| 73 |
72
|
a1i |
|- ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) -> QQ C_ CC ) |
| 74 |
73 28
|
unssd |
|- ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) -> ( QQ u. { A } ) C_ CC ) |
| 75 |
74
|
ad2antrr |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( QQ u. { A } ) C_ CC ) |
| 76 |
12 71 75
|
fldgensdrg |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( CCfld fldGen ( QQ u. { A } ) ) e. ( SubDRing ` CCfld ) ) |
| 77 |
13
|
qrngbas |
|- QQ = ( Base ` ( CCfld |`s QQ ) ) |
| 78 |
77 65
|
fldextsdrg |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> QQ e. ( SubDRing ` ( CCfld |`s ( lastS ` v ) ) ) ) |
| 79 |
43
|
sdrgss |
|- ( QQ e. ( SubDRing ` ( CCfld |`s ( lastS ` v ) ) ) -> QQ C_ ( Base ` ( CCfld |`s ( lastS ` v ) ) ) ) |
| 80 |
78 79
|
syl |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> QQ C_ ( Base ` ( CCfld |`s ( lastS ` v ) ) ) ) |
| 81 |
12
|
sdrgss |
|- ( ( lastS ` v ) e. ( SubDRing ` CCfld ) -> ( lastS ` v ) C_ CC ) |
| 82 |
70 81
|
syl |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( lastS ` v ) C_ CC ) |
| 83 |
|
eqid |
|- ( CCfld |`s ( lastS ` v ) ) = ( CCfld |`s ( lastS ` v ) ) |
| 84 |
83 12
|
ressbas2 |
|- ( ( lastS ` v ) C_ CC -> ( lastS ` v ) = ( Base ` ( CCfld |`s ( lastS ` v ) ) ) ) |
| 85 |
82 84
|
syl |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( lastS ` v ) = ( Base ` ( CCfld |`s ( lastS ` v ) ) ) ) |
| 86 |
80 85
|
sseqtrrd |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> QQ C_ ( lastS ` v ) ) |
| 87 |
|
simprr |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( C ` m ) C_ ( lastS ` v ) ) |
| 88 |
|
simpllr |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> A e. ( C ` m ) ) |
| 89 |
87 88
|
sseldd |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> A e. ( lastS ` v ) ) |
| 90 |
89
|
snssd |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> { A } C_ ( lastS ` v ) ) |
| 91 |
86 90
|
unssd |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( QQ u. { A } ) C_ ( lastS ` v ) ) |
| 92 |
12 71 70 91
|
fldgenssp |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( CCfld fldGen ( QQ u. { A } ) ) C_ ( lastS ` v ) ) |
| 93 |
|
id |
|- ( ( lastS ` v ) e. ( SubDRing ` CCfld ) -> ( lastS ` v ) e. ( SubDRing ` CCfld ) ) |
| 94 |
83 93
|
subsdrg |
|- ( ( lastS ` v ) e. ( SubDRing ` CCfld ) -> ( ( CCfld fldGen ( QQ u. { A } ) ) e. ( SubDRing ` ( CCfld |`s ( lastS ` v ) ) ) <-> ( ( CCfld fldGen ( QQ u. { A } ) ) e. ( SubDRing ` CCfld ) /\ ( CCfld fldGen ( QQ u. { A } ) ) C_ ( lastS ` v ) ) ) ) |
| 95 |
94
|
biimpar |
|- ( ( ( lastS ` v ) e. ( SubDRing ` CCfld ) /\ ( ( CCfld fldGen ( QQ u. { A } ) ) e. ( SubDRing ` CCfld ) /\ ( CCfld fldGen ( QQ u. { A } ) ) C_ ( lastS ` v ) ) ) -> ( CCfld fldGen ( QQ u. { A } ) ) e. ( SubDRing ` ( CCfld |`s ( lastS ` v ) ) ) ) |
| 96 |
70 76 92 95
|
syl12anc |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( CCfld fldGen ( QQ u. { A } ) ) e. ( SubDRing ` ( CCfld |`s ( lastS ` v ) ) ) ) |
| 97 |
43 67 96
|
sdrgfldext |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( CCfld |`s ( lastS ` v ) ) /FldExt ( ( CCfld |`s ( lastS ` v ) ) |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) |
| 98 |
70
|
elexd |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( lastS ` v ) e. _V ) |
| 99 |
|
ressabs |
|- ( ( ( lastS ` v ) e. _V /\ ( CCfld fldGen ( QQ u. { A } ) ) C_ ( lastS ` v ) ) -> ( ( CCfld |`s ( lastS ` v ) ) |`s ( CCfld fldGen ( QQ u. { A } ) ) ) = ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) |
| 100 |
98 92 99
|
syl2anc |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( ( CCfld |`s ( lastS ` v ) ) |`s ( CCfld fldGen ( QQ u. { A } ) ) ) = ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) |
| 101 |
97 100
|
breqtrd |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( CCfld |`s ( lastS ` v ) ) /FldExt ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) |
| 102 |
101
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( CCfld |`s ( lastS ` v ) ) /FldExt ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) |
| 103 |
|
extdgcl |
|- ( ( CCfld |`s ( lastS ` v ) ) /FldExt ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) e. NN0* ) |
| 104 |
102 103
|
syl |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) e. NN0* ) |
| 105 |
|
xnn0xr |
|- ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) e. NN0* -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) e. RR* ) |
| 106 |
104 105
|
syl |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) e. RR* ) |
| 107 |
|
extdggt0 |
|- ( ( CCfld |`s ( lastS ` v ) ) /FldExt ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) -> 0 < ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) ) |
| 108 |
102 107
|
syl |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> 0 < ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) ) |
| 109 |
|
extdgmul |
|- ( ( ( CCfld |`s ( lastS ` v ) ) /FldExt ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) /\ ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) /FldExt ( CCfld |`s QQ ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) *e ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) ) |
| 110 |
101 30 109
|
syl2anc |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) *e ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) ) |
| 111 |
110
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) *e ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) ) |
| 112 |
|
xmulcom |
|- ( ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) e. RR* /\ ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) e. RR* ) -> ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) *e ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) = ( ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) *e ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) ) ) |
| 113 |
106 42 112
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) *e ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) = ( ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) *e ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) ) ) |
| 114 |
111 113
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) *e ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) ) ) |
| 115 |
40 42 106 108 114
|
rexmul2 |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) e. RR ) |
| 116 |
|
extdggt0 |
|- ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) /FldExt ( CCfld |`s QQ ) -> 0 < ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) |
| 117 |
31 116
|
syl |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> 0 < ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) |
| 118 |
33 115 117
|
xnn0nnd |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) e. NN ) |
| 119 |
11 118
|
eqeltrid |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( L [:] Q ) e. NN ) |
| 120 |
40 106 42 117 111
|
rexmul2 |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) e. RR ) |
| 121 |
104 120
|
xnn0nn0d |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) e. NN0 ) |
| 122 |
121
|
nn0zd |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) e. ZZ ) |
| 123 |
118
|
nnnn0d |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) e. NN0 ) |
| 124 |
123
|
nn0zd |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) e. ZZ ) |
| 125 |
|
rexmul |
|- ( ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) e. RR /\ ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) e. RR ) -> ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) *e ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) = ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) x. ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) ) |
| 126 |
120 115 125
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) *e ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) = ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) x. ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) ) |
| 127 |
111 126
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) x. ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) ) |
| 128 |
127
|
eqcomd |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) x. ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) = ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) ) |
| 129 |
128 34
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) x. ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) = ( 2 ^ p ) ) |
| 130 |
|
dvds0lem |
|- ( ( ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) e. ZZ /\ ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) e. ZZ /\ ( 2 ^ p ) e. ZZ ) /\ ( ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) ) x. ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) || ( 2 ^ p ) ) |
| 131 |
122 124 38 129 130
|
syl31anc |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) [:] ( CCfld |`s QQ ) ) || ( 2 ^ p ) ) |
| 132 |
11 131
|
eqbrtrid |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> ( L [:] Q ) || ( 2 ^ p ) ) |
| 133 |
|
dvdsprmpweq |
|- ( ( 2 e. Prime /\ ( L [:] Q ) e. NN /\ p e. NN0 ) -> ( ( L [:] Q ) || ( 2 ^ p ) -> E. n e. NN0 ( L [:] Q ) = ( 2 ^ n ) ) ) |
| 134 |
133
|
imp |
|- ( ( ( 2 e. Prime /\ ( L [:] Q ) e. NN /\ p e. NN0 ) /\ ( L [:] Q ) || ( 2 ^ p ) ) -> E. n e. NN0 ( L [:] Q ) = ( 2 ^ n ) ) |
| 135 |
10 119 37 132 134
|
syl31anc |
|- ( ( ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) /\ p e. NN0 ) /\ ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) -> E. n e. NN0 ( L [:] Q ) = ( 2 ^ n ) ) |
| 136 |
64
|
simprd |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> E. p e. NN0 ( ( CCfld |`s ( lastS ` v ) ) [:] ( CCfld |`s QQ ) ) = ( 2 ^ p ) ) |
| 137 |
135 136
|
r19.29a |
|- ( ( ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) -> E. n e. NN0 ( L [:] Q ) = ( 2 ^ n ) ) |
| 138 |
|
simplr |
|- ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) -> m e. _om ) |
| 139 |
1 2 3 4 138
|
constrextdg2 |
|- ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) -> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` m ) C_ ( lastS ` v ) ) ) |
| 140 |
137 139
|
r19.29a |
|- ( ( ( ph /\ m e. _om ) /\ A e. ( C ` m ) ) -> E. n e. NN0 ( L [:] Q ) = ( 2 ^ n ) ) |
| 141 |
1
|
isconstr |
|- ( A e. Constr <-> E. m e. _om A e. ( C ` m ) ) |
| 142 |
8 141
|
sylib |
|- ( ph -> E. m e. _om A e. ( C ` m ) ) |
| 143 |
140 142
|
r19.29a |
|- ( ph -> E. n e. NN0 ( L [:] Q ) = ( 2 ^ n ) ) |