| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashne0.1 |
|- ( ph -> A e. V ) |
| 2 |
|
hashne0.2 |
|- ( ph -> A =/= (/) ) |
| 3 |
|
hashxnn0 |
|- ( A e. V -> ( # ` A ) e. NN0* ) |
| 4 |
1 3
|
syl |
|- ( ph -> ( # ` A ) e. NN0* ) |
| 5 |
|
hasheq0 |
|- ( A e. V -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
| 6 |
5
|
necon3bid |
|- ( A e. V -> ( ( # ` A ) =/= 0 <-> A =/= (/) ) ) |
| 7 |
6
|
biimpar |
|- ( ( A e. V /\ A =/= (/) ) -> ( # ` A ) =/= 0 ) |
| 8 |
1 2 7
|
syl2anc |
|- ( ph -> ( # ` A ) =/= 0 ) |
| 9 |
|
xnn0gt0 |
|- ( ( ( # ` A ) e. NN0* /\ ( # ` A ) =/= 0 ) -> 0 < ( # ` A ) ) |
| 10 |
4 8 9
|
syl2anc |
|- ( ph -> 0 < ( # ` A ) ) |