Description: Deduce that the size of a set is not zero. (Contributed by Thierry Arnoux, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashne0.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| hashne0.2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| Assertion | hashne0 | ⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashne0.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | hashne0.2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 3 | hashxnn0 | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0* ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0* ) |
| 5 | hasheq0 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) | |
| 6 | 5 | necon3bid | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ ∅ ) ) |
| 7 | 6 | biimpar | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ≠ 0 ) |
| 8 | 1 2 7 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ≠ 0 ) |
| 9 | xnn0gt0 | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0* ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) → 0 < ( ♯ ‘ 𝐴 ) ) | |
| 10 | 4 8 9 | syl2anc | ⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝐴 ) ) |