Metamath Proof Explorer


Theorem hashne0

Description: Deduce that the size of a set is not zero. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses hashne0.1 ( 𝜑𝐴𝑉 )
hashne0.2 ( 𝜑𝐴 ≠ ∅ )
Assertion hashne0 ( 𝜑 → 0 < ( ♯ ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 hashne0.1 ( 𝜑𝐴𝑉 )
2 hashne0.2 ( 𝜑𝐴 ≠ ∅ )
3 hashxnn0 ( 𝐴𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0* )
4 1 3 syl ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0* )
5 hasheq0 ( 𝐴𝑉 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) )
6 5 necon3bid ( 𝐴𝑉 → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ ∅ ) )
7 6 biimpar ( ( 𝐴𝑉𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ≠ 0 )
8 1 2 7 syl2anc ( 𝜑 → ( ♯ ‘ 𝐴 ) ≠ 0 )
9 xnn0gt0 ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0* ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) → 0 < ( ♯ ‘ 𝐴 ) )
10 4 8 9 syl2anc ( 𝜑 → 0 < ( ♯ ‘ 𝐴 ) )