Metamath Proof Explorer


Theorem hashne0

Description: Deduce that the size of a set is not zero. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses hashne0.1 φ A V
hashne0.2 φ A
Assertion hashne0 φ 0 < A

Proof

Step Hyp Ref Expression
1 hashne0.1 φ A V
2 hashne0.2 φ A
3 hashxnn0 A V A 0 *
4 1 3 syl φ A 0 *
5 hasheq0 A V A = 0 A =
6 5 necon3bid A V A 0 A
7 6 biimpar A V A A 0
8 1 2 7 syl2anc φ A 0
9 xnn0gt0 A 0 * A 0 0 < A
10 4 8 9 syl2anc φ 0 < A