| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsdrg.s |
|- S = ( R |`s A ) |
| 2 |
|
subsdrg.a |
|- ( ph -> A e. ( SubDRing ` R ) ) |
| 3 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 4 |
3
|
sdrgss |
|- ( B e. ( SubDRing ` S ) -> B C_ ( Base ` S ) ) |
| 5 |
4
|
adantl |
|- ( ( ph /\ B e. ( SubDRing ` S ) ) -> B C_ ( Base ` S ) ) |
| 6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 7 |
6
|
sdrgss |
|- ( A e. ( SubDRing ` R ) -> A C_ ( Base ` R ) ) |
| 8 |
1 6
|
ressbas2 |
|- ( A C_ ( Base ` R ) -> A = ( Base ` S ) ) |
| 9 |
2 7 8
|
3syl |
|- ( ph -> A = ( Base ` S ) ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ B e. ( SubDRing ` S ) ) -> A = ( Base ` S ) ) |
| 11 |
5 10
|
sseqtrrd |
|- ( ( ph /\ B e. ( SubDRing ` S ) ) -> B C_ A ) |
| 12 |
11
|
ex |
|- ( ph -> ( B e. ( SubDRing ` S ) -> B C_ A ) ) |
| 13 |
12
|
pm4.71d |
|- ( ph -> ( B e. ( SubDRing ` S ) <-> ( B e. ( SubDRing ` S ) /\ B C_ A ) ) ) |
| 14 |
1
|
sdrgdrng |
|- ( A e. ( SubDRing ` R ) -> S e. DivRing ) |
| 15 |
2 14
|
syl |
|- ( ph -> S e. DivRing ) |
| 16 |
|
sdrgrcl |
|- ( A e. ( SubDRing ` R ) -> R e. DivRing ) |
| 17 |
2 16
|
syl |
|- ( ph -> R e. DivRing ) |
| 18 |
15 17
|
2thd |
|- ( ph -> ( S e. DivRing <-> R e. DivRing ) ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ B C_ A ) -> ( S e. DivRing <-> R e. DivRing ) ) |
| 20 |
|
sdrgsubrg |
|- ( A e. ( SubDRing ` R ) -> A e. ( SubRing ` R ) ) |
| 21 |
1
|
subsubrg |
|- ( A e. ( SubRing ` R ) -> ( B e. ( SubRing ` S ) <-> ( B e. ( SubRing ` R ) /\ B C_ A ) ) ) |
| 22 |
2 20 21
|
3syl |
|- ( ph -> ( B e. ( SubRing ` S ) <-> ( B e. ( SubRing ` R ) /\ B C_ A ) ) ) |
| 23 |
22
|
rbaibd |
|- ( ( ph /\ B C_ A ) -> ( B e. ( SubRing ` S ) <-> B e. ( SubRing ` R ) ) ) |
| 24 |
1
|
oveq1i |
|- ( S |`s B ) = ( ( R |`s A ) |`s B ) |
| 25 |
|
ressabs |
|- ( ( A e. ( SubDRing ` R ) /\ B C_ A ) -> ( ( R |`s A ) |`s B ) = ( R |`s B ) ) |
| 26 |
2 25
|
sylan |
|- ( ( ph /\ B C_ A ) -> ( ( R |`s A ) |`s B ) = ( R |`s B ) ) |
| 27 |
24 26
|
eqtrid |
|- ( ( ph /\ B C_ A ) -> ( S |`s B ) = ( R |`s B ) ) |
| 28 |
27
|
eleq1d |
|- ( ( ph /\ B C_ A ) -> ( ( S |`s B ) e. DivRing <-> ( R |`s B ) e. DivRing ) ) |
| 29 |
19 23 28
|
3anbi123d |
|- ( ( ph /\ B C_ A ) -> ( ( S e. DivRing /\ B e. ( SubRing ` S ) /\ ( S |`s B ) e. DivRing ) <-> ( R e. DivRing /\ B e. ( SubRing ` R ) /\ ( R |`s B ) e. DivRing ) ) ) |
| 30 |
|
issdrg |
|- ( B e. ( SubDRing ` S ) <-> ( S e. DivRing /\ B e. ( SubRing ` S ) /\ ( S |`s B ) e. DivRing ) ) |
| 31 |
|
issdrg |
|- ( B e. ( SubDRing ` R ) <-> ( R e. DivRing /\ B e. ( SubRing ` R ) /\ ( R |`s B ) e. DivRing ) ) |
| 32 |
29 30 31
|
3bitr4g |
|- ( ( ph /\ B C_ A ) -> ( B e. ( SubDRing ` S ) <-> B e. ( SubDRing ` R ) ) ) |
| 33 |
32
|
ex |
|- ( ph -> ( B C_ A -> ( B e. ( SubDRing ` S ) <-> B e. ( SubDRing ` R ) ) ) ) |
| 34 |
33
|
pm5.32rd |
|- ( ph -> ( ( B e. ( SubDRing ` S ) /\ B C_ A ) <-> ( B e. ( SubDRing ` R ) /\ B C_ A ) ) ) |
| 35 |
13 34
|
bitrd |
|- ( ph -> ( B e. ( SubDRing ` S ) <-> ( B e. ( SubDRing ` R ) /\ B C_ A ) ) ) |