Metamath Proof Explorer


Theorem subsdrg

Description: A subring of a sub-division-ring is a sub-division-ring. See also subsubrg . (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses subsdrg.s
|- S = ( R |`s A )
subsdrg.a
|- ( ph -> A e. ( SubDRing ` R ) )
Assertion subsdrg
|- ( ph -> ( B e. ( SubDRing ` S ) <-> ( B e. ( SubDRing ` R ) /\ B C_ A ) ) )

Proof

Step Hyp Ref Expression
1 subsdrg.s
 |-  S = ( R |`s A )
2 subsdrg.a
 |-  ( ph -> A e. ( SubDRing ` R ) )
3 eqid
 |-  ( Base ` S ) = ( Base ` S )
4 3 sdrgss
 |-  ( B e. ( SubDRing ` S ) -> B C_ ( Base ` S ) )
5 4 adantl
 |-  ( ( ph /\ B e. ( SubDRing ` S ) ) -> B C_ ( Base ` S ) )
6 eqid
 |-  ( Base ` R ) = ( Base ` R )
7 6 sdrgss
 |-  ( A e. ( SubDRing ` R ) -> A C_ ( Base ` R ) )
8 1 6 ressbas2
 |-  ( A C_ ( Base ` R ) -> A = ( Base ` S ) )
9 2 7 8 3syl
 |-  ( ph -> A = ( Base ` S ) )
10 9 adantr
 |-  ( ( ph /\ B e. ( SubDRing ` S ) ) -> A = ( Base ` S ) )
11 5 10 sseqtrrd
 |-  ( ( ph /\ B e. ( SubDRing ` S ) ) -> B C_ A )
12 11 ex
 |-  ( ph -> ( B e. ( SubDRing ` S ) -> B C_ A ) )
13 12 pm4.71d
 |-  ( ph -> ( B e. ( SubDRing ` S ) <-> ( B e. ( SubDRing ` S ) /\ B C_ A ) ) )
14 1 sdrgdrng
 |-  ( A e. ( SubDRing ` R ) -> S e. DivRing )
15 2 14 syl
 |-  ( ph -> S e. DivRing )
16 sdrgrcl
 |-  ( A e. ( SubDRing ` R ) -> R e. DivRing )
17 2 16 syl
 |-  ( ph -> R e. DivRing )
18 15 17 2thd
 |-  ( ph -> ( S e. DivRing <-> R e. DivRing ) )
19 18 adantr
 |-  ( ( ph /\ B C_ A ) -> ( S e. DivRing <-> R e. DivRing ) )
20 sdrgsubrg
 |-  ( A e. ( SubDRing ` R ) -> A e. ( SubRing ` R ) )
21 1 subsubrg
 |-  ( A e. ( SubRing ` R ) -> ( B e. ( SubRing ` S ) <-> ( B e. ( SubRing ` R ) /\ B C_ A ) ) )
22 2 20 21 3syl
 |-  ( ph -> ( B e. ( SubRing ` S ) <-> ( B e. ( SubRing ` R ) /\ B C_ A ) ) )
23 22 rbaibd
 |-  ( ( ph /\ B C_ A ) -> ( B e. ( SubRing ` S ) <-> B e. ( SubRing ` R ) ) )
24 1 oveq1i
 |-  ( S |`s B ) = ( ( R |`s A ) |`s B )
25 ressabs
 |-  ( ( A e. ( SubDRing ` R ) /\ B C_ A ) -> ( ( R |`s A ) |`s B ) = ( R |`s B ) )
26 2 25 sylan
 |-  ( ( ph /\ B C_ A ) -> ( ( R |`s A ) |`s B ) = ( R |`s B ) )
27 24 26 eqtrid
 |-  ( ( ph /\ B C_ A ) -> ( S |`s B ) = ( R |`s B ) )
28 27 eleq1d
 |-  ( ( ph /\ B C_ A ) -> ( ( S |`s B ) e. DivRing <-> ( R |`s B ) e. DivRing ) )
29 19 23 28 3anbi123d
 |-  ( ( ph /\ B C_ A ) -> ( ( S e. DivRing /\ B e. ( SubRing ` S ) /\ ( S |`s B ) e. DivRing ) <-> ( R e. DivRing /\ B e. ( SubRing ` R ) /\ ( R |`s B ) e. DivRing ) ) )
30 issdrg
 |-  ( B e. ( SubDRing ` S ) <-> ( S e. DivRing /\ B e. ( SubRing ` S ) /\ ( S |`s B ) e. DivRing ) )
31 issdrg
 |-  ( B e. ( SubDRing ` R ) <-> ( R e. DivRing /\ B e. ( SubRing ` R ) /\ ( R |`s B ) e. DivRing ) )
32 29 30 31 3bitr4g
 |-  ( ( ph /\ B C_ A ) -> ( B e. ( SubDRing ` S ) <-> B e. ( SubDRing ` R ) ) )
33 32 ex
 |-  ( ph -> ( B C_ A -> ( B e. ( SubDRing ` S ) <-> B e. ( SubDRing ` R ) ) ) )
34 33 pm5.32rd
 |-  ( ph -> ( ( B e. ( SubDRing ` S ) /\ B C_ A ) <-> ( B e. ( SubDRing ` R ) /\ B C_ A ) ) )
35 13 34 bitrd
 |-  ( ph -> ( B e. ( SubDRing ` S ) <-> ( B e. ( SubDRing ` R ) /\ B C_ A ) ) )