Metamath Proof Explorer


Theorem subsdrg

Description: A subring of a sub-division-ring is a sub-division-ring. See also subsubrg . (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses subsdrg.s 𝑆 = ( 𝑅s 𝐴 )
subsdrg.a ( 𝜑𝐴 ∈ ( SubDRing ‘ 𝑅 ) )
Assertion subsdrg ( 𝜑 → ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝐵𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 subsdrg.s 𝑆 = ( 𝑅s 𝐴 )
2 subsdrg.a ( 𝜑𝐴 ∈ ( SubDRing ‘ 𝑅 ) )
3 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
4 3 sdrgss ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) )
5 4 adantl ( ( 𝜑𝐵 ∈ ( SubDRing ‘ 𝑆 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) )
6 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
7 6 sdrgss ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) )
8 1 6 ressbas2 ( 𝐴 ⊆ ( Base ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) )
9 2 7 8 3syl ( 𝜑𝐴 = ( Base ‘ 𝑆 ) )
10 9 adantr ( ( 𝜑𝐵 ∈ ( SubDRing ‘ 𝑆 ) ) → 𝐴 = ( Base ‘ 𝑆 ) )
11 5 10 sseqtrrd ( ( 𝜑𝐵 ∈ ( SubDRing ‘ 𝑆 ) ) → 𝐵𝐴 )
12 11 ex ( 𝜑 → ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) → 𝐵𝐴 ) )
13 12 pm4.71d ( 𝜑 → ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ∧ 𝐵𝐴 ) ) )
14 1 sdrgdrng ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝑆 ∈ DivRing )
15 2 14 syl ( 𝜑𝑆 ∈ DivRing )
16 sdrgrcl ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝑅 ∈ DivRing )
17 2 16 syl ( 𝜑𝑅 ∈ DivRing )
18 15 17 2thd ( 𝜑 → ( 𝑆 ∈ DivRing ↔ 𝑅 ∈ DivRing ) )
19 18 adantr ( ( 𝜑𝐵𝐴 ) → ( 𝑆 ∈ DivRing ↔ 𝑅 ∈ DivRing ) )
20 sdrgsubrg ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) )
21 1 subsubrg ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵𝐴 ) ) )
22 2 20 21 3syl ( 𝜑 → ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵𝐴 ) ) )
23 22 rbaibd ( ( 𝜑𝐵𝐴 ) → ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) )
24 1 oveq1i ( 𝑆s 𝐵 ) = ( ( 𝑅s 𝐴 ) ↾s 𝐵 )
25 ressabs ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝐵𝐴 ) → ( ( 𝑅s 𝐴 ) ↾s 𝐵 ) = ( 𝑅s 𝐵 ) )
26 2 25 sylan ( ( 𝜑𝐵𝐴 ) → ( ( 𝑅s 𝐴 ) ↾s 𝐵 ) = ( 𝑅s 𝐵 ) )
27 24 26 eqtrid ( ( 𝜑𝐵𝐴 ) → ( 𝑆s 𝐵 ) = ( 𝑅s 𝐵 ) )
28 27 eleq1d ( ( 𝜑𝐵𝐴 ) → ( ( 𝑆s 𝐵 ) ∈ DivRing ↔ ( 𝑅s 𝐵 ) ∈ DivRing ) )
29 19 23 28 3anbi123d ( ( 𝜑𝐵𝐴 ) → ( ( 𝑆 ∈ DivRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝑆s 𝐵 ) ∈ DivRing ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝐵 ) ∈ DivRing ) ) )
30 issdrg ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ↔ ( 𝑆 ∈ DivRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝑆s 𝐵 ) ∈ DivRing ) )
31 issdrg ( 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝐵 ) ∈ DivRing ) )
32 29 30 31 3bitr4g ( ( 𝜑𝐵𝐴 ) → ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ↔ 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ) )
33 32 ex ( 𝜑 → ( 𝐵𝐴 → ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ↔ 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ) ) )
34 33 pm5.32rd ( 𝜑 → ( ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ∧ 𝐵𝐴 ) ↔ ( 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝐵𝐴 ) ) )
35 13 34 bitrd ( 𝜑 → ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝐵𝐴 ) ) )