| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsdrg.s |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
| 2 |
|
subsdrg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 4 |
3
|
sdrgss |
⊢ ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 7 |
6
|
sdrgss |
⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 8 |
1 6
|
ressbas2 |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 9 |
2 7 8
|
3syl |
⊢ ( 𝜑 → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 11 |
5 10
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ) → 𝐵 ⊆ 𝐴 ) |
| 12 |
11
|
ex |
⊢ ( 𝜑 → ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) → 𝐵 ⊆ 𝐴 ) ) |
| 13 |
12
|
pm4.71d |
⊢ ( 𝜑 → ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) ) ) |
| 14 |
1
|
sdrgdrng |
⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝑆 ∈ DivRing ) |
| 15 |
2 14
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ DivRing ) |
| 16 |
|
sdrgrcl |
⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝑅 ∈ DivRing ) |
| 17 |
2 16
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| 18 |
15 17
|
2thd |
⊢ ( 𝜑 → ( 𝑆 ∈ DivRing ↔ 𝑅 ∈ DivRing ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑆 ∈ DivRing ↔ 𝑅 ∈ DivRing ) ) |
| 20 |
|
sdrgsubrg |
⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) |
| 21 |
1
|
subsubrg |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) ) |
| 22 |
2 20 21
|
3syl |
⊢ ( 𝜑 → ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) ) |
| 23 |
22
|
rbaibd |
⊢ ( ( 𝜑 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) ) |
| 24 |
1
|
oveq1i |
⊢ ( 𝑆 ↾s 𝐵 ) = ( ( 𝑅 ↾s 𝐴 ) ↾s 𝐵 ) |
| 25 |
|
ressabs |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑅 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
| 26 |
2 25
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑅 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
| 27 |
24 26
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
| 28 |
27
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑆 ↾s 𝐵 ) ∈ DivRing ↔ ( 𝑅 ↾s 𝐵 ) ∈ DivRing ) ) |
| 29 |
19 23 28
|
3anbi123d |
⊢ ( ( 𝜑 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑆 ∈ DivRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝑆 ↾s 𝐵 ) ∈ DivRing ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐵 ) ∈ DivRing ) ) ) |
| 30 |
|
issdrg |
⊢ ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ↔ ( 𝑆 ∈ DivRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝑆 ↾s 𝐵 ) ∈ DivRing ) ) |
| 31 |
|
issdrg |
⊢ ( 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐵 ) ∈ DivRing ) ) |
| 32 |
29 30 31
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ↔ 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ) ) |
| 33 |
32
|
ex |
⊢ ( 𝜑 → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ↔ 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ) ) ) |
| 34 |
33
|
pm5.32rd |
⊢ ( 𝜑 → ( ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ∧ 𝐵 ⊆ 𝐴 ) ↔ ( 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) ) |
| 35 |
13 34
|
bitrd |
⊢ ( 𝜑 → ( 𝐵 ∈ ( SubDRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) ) |